Research Article
In Silico Screening of Circulating MicroRNAs as Potential Biomarkers for the Diagnosis of Ovarian Cancer
Table 1
Main characteristics of the studies included in the meta-analysis.
| Author/publication year | Country | Sample | Method | Patients | Controls | miRNAs studied | AUC | Sensitivity | Specificity |
| Kan et al. [6] | Australia | Serum | Taqman | 28 serous epithelial ovarian cancers | 28 healthy women | MIR200A MIR200B MIR200C | 0.675 0.722 0.727 | 0.821 0.893 0.750 | 0.357 0.321 0.536 |
| Gao and Wu [13] | China | Serum | Taqman | 74/19 epithelial/borderline ovarian cancers | 50 healthy women | MIR200C | 0.79 | 0.720 | 0.700 |
| Meng et al. [11] | Germany | Serum | Taqman | 180 epithelial ovarian cancers | 66 healthy women | MIR25 MIR429 | 0.834 0.704 | 0.924 0.594 | 0.639 0.955 |
| Meng et al. [12] | Germany | Serum exosomes | Taqman | 163 epithelial ovarian cancers | 20 benign ovarian diseases | MIR200A MIR200B MIR200C | 0.914 0.815 0.655 | 0.900 1.000 1.000 | 0.839 0.528 0.311 |
| Elias et al. [8] | United States | Serum | Next-generation sequencing | 98 epithelial ovarian cancers | 15 healthy women | MIR200A MIR200B MIR200C MIR429 MIR25 | 0.649 0.737 0.779 0.703 0.875 | 0.265 0.500 0.571 0.469 0.602 | 1.000 0.933 0.933 0.867 1.000 | 98 epithelial ovarian cancers | 45 benign ovarian diseases | MIR200A MIR200B MIR200C MIR429 | 0.693 0.783 0.762 0.692 | 0.439 0.643 0.673 0.694 | 0.911 0.778 0.756 0.622 |
|
|