Research Article

In Silico Screening of Circulating MicroRNAs as Potential Biomarkers for the Diagnosis of Ovarian Cancer

Table 1

Main characteristics of the studies included in the meta-analysis.

Author/publication yearCountrySampleMethodPatientsControlsmiRNAs studiedAUCSensitivitySpecificity

Kan et al. [6]AustraliaSerumTaqman28 serous epithelial ovarian cancers28 healthy womenMIR200A
MIR200B
MIR200C
0.675
0.722
0.727
0.821
0.893
0.750
0.357
0.321
0.536

Gao and Wu [13]ChinaSerumTaqman74/19 epithelial/borderline ovarian cancers50 healthy womenMIR200C0.790.7200.700

Meng et al. [11]GermanySerumTaqman180 epithelial ovarian cancers66 healthy womenMIR25
MIR429
0.834
0.704
0.924
0.594
0.639
0.955

Meng et al. [12]GermanySerum exosomesTaqman163 epithelial ovarian cancers20 benign ovarian diseasesMIR200A
MIR200B
MIR200C
0.914
0.815
0.655
0.900
1.000
1.000
0.839
0.528
0.311

Elias et al. [8]United StatesSerumNext-generation sequencing98 epithelial ovarian cancers15 healthy womenMIR200A
MIR200B
MIR200C
MIR429
MIR25
0.649
0.737
0.779
0.703
0.875
0.265
0.500
0.571
0.469
0.602
1.000
0.933
0.933
0.867
1.000
98 epithelial ovarian cancers45 benign ovarian diseasesMIR200A
MIR200B
MIR200C
MIR429
0.693
0.783
0.762
0.692
0.439
0.643
0.673
0.694
0.911
0.778
0.756
0.622