Research Article
Prediction of COVID-19 with Computed Tomography Images using Hybrid Learning Techniques
Table 14
Performance analysis with and without image preprocessing.
| Model | With preprocessing | Without preprocessing | Accuracy | F1-score | MAE | RMSE | Specificity | Accuracy | F1-score | MAE | RMSE+ | Specificity |
| SVM | 93.39% | 0.92 | 0.229 | 0.054 | 0.96 | 91.11% | 0.91 | 0.298 | 0.089 | 0.94 | Random Forest | 95.19% | 0.95 | 0.218 | 0.049 | 0.97 | 94.23% | 0.94 | 0.227 | 0.054 | 0.96 | Decision Tree | 93.12% | 0.92 | 0.262 | 0.063 | 0.96 | 92.02% | 0.92 | 0.265 | 0.077 | 0.94 | Naive Bayes | 72.69% | 0.72 | 0.795 | 0.396 | 0.87 | 69.63% | 0.69 | 0.803 | 0.412 | 0.78 | KNN | 92.49% | 0.92 | 0.226 | 0.051 | 0.97 | 90.15% | 0.90 | 0.321 | 0.093 | 0.92 | CNN | 90.01% | 0.90 | 0.314 | 0.087 | 0.95 | 89.45% | 0.89 | 0.356 | 0.097 | 0.92 | AlexNet | 94.59% | 0.94 | 0.206 | 0.061 | 0.97 | 93.78% | 0.93 | 0.226 | 0.049 | 0.94 | VGG-16 | 93.69% | 0.93 | 0.227 | 0.051 | 0.96 | 91.82% | 0.92 | 0.225 | 0.051 | 0.93 | Resnet50 | 91.59% | 0.91 | 0.272 | 0.077 | 0.96 | 91.18% | 0.91 | 0.299 | 0.065 | 0.93 | InceptionV3 | 89.78% | 0.89 | 0.313 | 0.082 | 0.95 | 87.43% | 0.86 | 0.391 | 0.099 | 0.94 | CNN+SVM | 91.12% | 0.91 | 0.281 | 0.082 | 0.97 | 88.73% | 0.89 | 0.366 | 0.096 | 0.93 | CNN+Random Forest | 92.49% | 0.93 | 0.227 | 0.052 | 0.97 | 89.99% | 0.90 | 0.325 | 0.088 | 0.93 | CNN+Decision Tree | 90.99% | 0.91 | 0.271 | 0.078 | 0.96 | 88.31% | 0.88 | 0.347 | 0.093 | 0.93 | CNN+Naive Bayes | 82.85% | 0.83 | 0.456 | 0.123 | 0.91 | 79.56% | 0.80 | 0.478 | 0.178 | 0.87 | CNN+KNN | 91.89% | 0.92 | 0.253 | 0.061 | 0.95 | 89.56% | 0.89 | 0.312 | 0.079 | 0.90 | AlexNet+SVM | 96.69% | 0.97 | 0.217 | 0.043 | 0.98 | 95.12% | 0.95 | 0.217 | 0.047 | 0.93 | AlexNet+Random Forest | 96.09% | 0.96 | 0.225 | 0.049 | 0.98 | 95.11% | 0.95 | 0.213 | 0.047 | 0.95 | AlexNet+Decision Tree | 93.09% | 0.93 | 0.225 | 0.050 | 0.97 | 92.45% | 0.92 | 0.223 | 0.053 | 0.92 | AlexNet+Naive Byes | 83.13% | 0.83 | 0.421 | 0.099 | 0.91 | 80.55% | 0.81 | 0.492 | 0.153 | 0.86 | AlexNet+KNN | 93.39% | 0.93 | 0.220 | 0.055 | 0.94 | 90.91% | 0.91 | 0.279 | 0.050 | 0.91 | VGG-16+SVM | 94.59% | 0.95 | 0.205 | 0.061 | 0.97 | 93.69% | 0.93 | 0.221 | 0.045 | 0.93 | VGG-16+Random Forest | 95.19% | 0.95 | 0.200 | 0.054 | 0.97 | 93.34% | 0.93 | 0.22 | 0.049 | 0.94 | VGG-16+Decision Tree | 93.39% | 0.93 | 0.214 | 0.043 | 0.96 | 91.23% | 0.91 | 0.277 | 0.080 | 0.93 | VGG-16+Naive Bayes | 84.68% | 0.85 | 0.419 | 0.083 | 0.92 | 82.87% | 0.83 | 0.455 | 0.122 | 0.88 | VGG-16+KNN | 93.09% | 0.93 | 0.261 | 0.062 | 0.96 | 92.45% | 0.92 | 0.227 | 0.053 | 0.92 | Resnet50+SVM | 93.69% | 0.94 | 0.227 | 0.050 | 0.97 | 91.78% | 0.93 | 0.220 | 0.048 | 0.94 | Resnet50+Random Forest | 94.29% | 0.94 | 0.201 | 0.059 | 0.97 | 86.45% | 0.86 | 0.399 | 0.087 | 0.93 | Resnet50+Decision Tree | 92.19% | 0.91 | 0.278 | 0.079 | 0.96 | 89.10% | 0.89 | 0.369 | 0.101 | 0.93 | Resnet50+Naive Bayes | 87.08% | 0.87 | 0.389 | 0.100 | 0.94 | 85.18% | 0.85 | 0.402 | 0.077 | 0.90 | Resnet50+KNN | 91.89% | 0.92 | 0.249 | 0.058 | 0.96 | 88.99% | 0.89 | 0.337 | 0.088 | 0.91 | InceptionV3+SVM | 92.79% | 0.93 | 0.220 | 0.047 | 0.99 | 89.99% | 0.90 | 0.319 | 0.091 | 0.92 | InceptionV3+Random Forest | 91.89% | 0.92 | 0.236 | 0.059 | 0.96 | 87.91% | 0.88 | 0.320 | 0.079 | 0.93 | InceptionV3+Decision Tree | 90.69% | 0.91 | 0.266 | 0.070 | 0.95 | 88.45% | 0.88 | 0.340 | 0.091 | 0.91 | InceptionV3+Naive Bayes | 86.18% | 0.86 | 0.411 | 0.078 | 0.93 | 84.72% | 0.85 | 0.416 | 0.081 | 0.91 | InceptionV3+KNN | 91.29% | 0.91 | 0.288 | 0.075 | 0.95 | 90.11% | 0.90 | 0.311 | 0.090 | 0.93 |
|
|