Research Article
EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy Using Neural Networks
Table 3
Comparison with U-net on local intelligent ophthalmology dataset.
| Lesion type | Model | Lesion based results | SE | SP | PR | ACC | F1 |
| MAs | U-net | 13.17 | 99.97 | 54.07 | 99.90 | 21.19 | EAD-Net | 17.32 | 99.98 | 59.26 | 99.91 | 26.82 | HEs | U-net | 73.43 | 99.93 | 80.21 | 99.83 | 76.67 | EAD-Net | 83.59 | 99.95 | 87.75 | 99.89 | 85.62 | Hard exudates | U-net | 68.38 | 99.99 | 98.42 | 99.96 | 80.70 | EAD-Net | 84.60 | 99.99 | 93.51 | 99.98 | 88.83 | Soft exudates | U-net | 76.89 | 99.99 | 98.86 | 99.98 | 86.50 | EAD-Net | 84.92 | 99.99 | 92.78 | 99.98 | 88.68 |
|
|
SE: sensitivity; SP: specificity; PR: precision; ACC: accuracy; F1: F1 score.
|