Research Article

Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images

Table 3

The five models’ evaluation results.

ModelEvaluation indicatorsNormalObserveSurgery

MobileNet (original data)Sensitivity96.72%72.58%86.15%
Specificity96.06%92.06%89.43%
F1-score94.40%76.92%83.58%
AUC0.9640.8230.878
95% CI0.931-0.9960.751-0.8950.820-0.936
Kappa77.64%
Accuracy85.11%
Size (MB)13.5
Parameters (million)4.2
Time-S (ms)5.86
Time-C (ms)473.37
MobileNet (augmented data)Sensitivity96.72%83.87%84.62%
Specificity98.43%90.48%93.50%
F1-score96.72%82.54%85.94%
AUC0.9760.8720.891
95% CI0.947-10.811-0.9330.833-0.948
Kappa82.44%
Accuracy88.30%
Size (MB)13.5
Parameters (million)4.2
Time-S (ms)5.75
Time-C (ms)465.53
AlexNetSensitivity91.80%83.87%84.62%
Specificity98.43%88.10%77.61%
F1-score94.12%80.62%85.94%
AUC0.9510.8600.891
95% CI0.909-0.9930.797-0.9220.833-0.948
Kappa80.05%
Accuracy86.70%
Size (MB)233
Parameters (million)60
Time-S (ms)1.06
Time-C (ms)64.63
VGG16Sensitivity96.72%79.03%67.69%
Specificity92.13%81.75%97.56%
F1-score90.77%73.13%78.57%
AUC0.9440.8040.826
95% CI0.907-0.9820.733-0.8740.754-0.899
Kappa71.34%
Accuracy80.85%
Size (MB)527
Parameters (million)138
Time-S (ms)1.72
Time-C (ms)1020.11
ResNet18Sensitivity81.97%66.13%75.38%
Specificity95.28%81.75%84.55%
F1-score85.47%65.08%73.68%
AUC0.8860.7390.800
95% CI0.825-0.9470.660-0.8190.728-0.871
Kappa61.67%
Accuracy74.47%
Size (MB)44.6
Parameters (million)33
Time-S (ms)2.53
Time-C (ms)170.88