Review Article

In Vivo and In Vitro Metabolites from the Main Diester and Monoester Diterpenoid Alkaloids in a Traditional Chinese Herb, the Aconitum Species

Table 3

Metabolites of AC, MA, and HA converted in intestine.

DDAs (ESI+)FormulaIdentificationNeutral loss (Da), identification of fatty acidMetabolic procedureMS detectionReferences

AC662C34H47NO1210-Hydroxy ACNAaRats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P4)
632C33H45NO1116-O-Demethyl AC*NARabbits; contents from small intestine and caecum and feces; ig, in vivo.IT[23] (M3)
Human; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24] (M1)
630 C34H47NO10Indaconitine (15-deoxy AC)bRabbits; contents from small intestine and caecum and feces; ig, in vivo.IT[23] (M6)
Rats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P5)
Deoxy AC*NARabbits; contents from small intestine and caecum and feces; ig, in vivo.IT[23] (M5)
Human; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24] (M2)
Rats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P10)
616C33H45NO1016-O-Demethyl-deoxy AC*NAHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24] (M3)
604C32H45NO10BACNARabbits; contents from small intestine and caecum and feces; ig, in vivo.IT[23] (M2)
Rats; intestinal bacteria; anaerobic incubation, in vitro.cIT[25]
Rats; intestinal bacteria; anaerobic incubation, in vitro.dIT[26]
Rats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P1)
590C31H43NO1016-O-Demethyl BACNARabbits; contents from small intestine and caecum and feces; ig, in vivo.IT[23] (M1)
588C32H45NO915-Deoxy BACNARats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P2)
586C32H43NO9Deacetoxy ACNARats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]
660C35H49NO118-O-Propionyl BAC74, propionic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
NARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
NARats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P8)
674C36H51NO118-O-Butyryl BAC88, butyric acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
NARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
NARats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P9)
688C37H53NO118-O-Valeryl BAC102, valeric acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
NARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
700C38H53NO118-O-Hexenoyl BAC114, hexenoic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
NARats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P7)
690C36H51NO128-O-(3-Hydroxy)-butyryl BACNARats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P11)
702C38H55NO118-O-Hexanoyl BAC116, hexanoic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
716C39H57NO118-O-Heptanoyl BAC130, heptanoic acidIbid.Ibid.Ibid.
722C40H51NO118-O-Phenylacetyl BAC136, phenylacetic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
NARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
728C40H57NO118-O-Octenoyl BACNARats; intestinal bacteria; anaerobic incubation at pH 7.0, in vitro.IT[22] (P3)
736C41H53NO118-O-Phenylpropionyl BAC150, phenylpropionic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
800C45H69NO118-O-Tridecanoyl BAC214, tridecanoic acid Ibid.Ibid.Ibid.
814C46H71NO118-O-Tetradecanoyl BAC228, tetradecanoic acid Ibid.Ibid.Ibid.
828C47H73NO118-O-Pentadecanoyl BAC242, pentadecanoic acidIbid.Ibid.Ibid.
842C48H75NO118-O-Palmitoyl BAC256, palmitic acidIbid.Ibid.Ibid.
854C49H75NO118-O-Heptadecenoyl BAC268, heptadecenoic acidIbid.Ibid.Ibid.
856C49H77NO118-O-(Methyl)-palmitoyl BAC270, methyl palmitic acidIbid.Ibid.Ibid.
866C50H75NO118-O-Linoleyl BAC280, linoleic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
NARats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]
868C50H77NO118-O-Oleoyl BAC282, oleic acidHuman; intestinal bacteria; anaerobic incubation, in vitro.IT, FT-ICR[24]
870C50H79NO118-O-Stearoyl BAC284, stearic acidIbid.Ibid.Ibid.
882C51H79NO118-O-(9)-Nonadecenoyl BAC296, nonadeceneIbid.Ibid.Ibid.
886C50H79NO128-O-(3-Hydroxy)-stearoyl BAC 300, 3-hydroxy stearic acidIbid.Ibid.Ibid.
954C56H91NO118-O-Tetracosanoyl BAC 368, tetracosanoic acid Ibid.Ibid.Ibid.
962C57H87NO11 8-O-Pentacosatrienoyl BAC376, pentacosatrienoic acidIbid.Ibid.Ibid.

MA590C31H43NO10BMANARats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]
572C31H41NO9Deacetoxy MANAIbid.Ibid.Ibid.
660C35H49NO118-O-Butyryl BMANARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
674C36H51NO118-O-Valeryl BMANAIbid.Ibid.Ibid.
852C49H73NO118-O-Linoleyl BMANARats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]

HA574C31H43NO9BHANARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
Rats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]
556C31H41NO8Deacetoxy HANARats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]
630C34H47NO108-O-Propionyl BHANARats; intestinal bacteria; anaerobic incubation, in vitro.eIT, MALDI source-FT-ICR[27]
644C35H49NO108-O-Butyryl BHANAIbid.Ibid.Ibid.
658C36H51NO108-O-Valeryl BHANAIbid.Ibid.Ibid.
692C39H49NO108-O-Phenylacetyl BHANAIbid.Ibid.Ibid.
836C49H73NO108-O-Linoleyl BHANARats; intestinal bacteria; anaerobic incubation, in vitro.c,dIT[25, 26]

Not available.
bDeoxy may also be referred to as dehydroxy in the literature.
cDDA was produced through decoction of Aconiti Radix Cocta with Fritillariae Thunbergii Bulbus, Pinelliae Rhizoma Preparatum, and Ampelopsis Radix.
It is not clear whether these compounds were directly metabolized from DDAs or were originally ingested.
dDDA was produced through decoction of Aconiti Lateralis Radix Praeparata with Glycyrrhizae Radix and Rhizome as well as with Atractylodis Macrocephalae Rhizoma.
It is not clear whether these compounds were directly metabolized from DDAs or were originally ingested.
eIn addition to AC and HA monomers, DDAs were also generated from ethyl alcohol extraction ofRadix Aconiti.
It is not clear whether these compounds were directly metabolized from DDAs or were originally ingested.
*These metabolites were further biotransformed in the intestine. Metabolites of these intermediate products are listed in Table 4.