Research Article
Combining the External Medical Knowledge Graph Embedding to Improve the Performance of Syndrome Differentiation Model
Table 2
The results on the EMRs dataset.
| Models | P@1 | P@3 | P@5 | Average precision | Hamming loss | Label ranking loss |
| AttentiveConvNet | 0.416 | 0.404 | 0.384 | 0.263 | 0.081 | 0.136 | DPCNN | 0.690 | 0.63 | 0.574 | 0.528 | 0.045 | 0.079 | Transformer | 0.721 | 0.665 | 0.61 | 0.578 | 0.04 | 0.086 | AttentionXML | 0.749 | 0.702 | 0.645 | 0.537 | 0.043 | 0.078 | TextCNN | 0.753 | 0.686 | 0.636 | 0.603 | 0.039 | 0.069 | TextRNN | 0.769 | 0.719 | 0.668 | 0.646 | 0.034 | 0.068 | FastText | 0.809 | 0.748 | 0.686 | 0.676 | 0.034 | 0.046 | BERT | 0.89 | 0.876 | 0.845 | 0.857 | 0.026 | 0.016 | KG-based | 0.059 | 0.073 | 0.066 | — | — | — | KDSD | 0.9 | 0.879 | 0.852 | 0.866 | 0.029 | 0.014 |
|
|