Research Article
Research on the Combined Prediction Model of Residential Building Energy Consumption Based on Random Forest and BP Neural Network
Table 5
Comparison of RF-BPNN with existing model results.
| | Methods | MAE | RMSE | MAPE (%) |
| HL | IRLS [15] | 2.1400 | 3.1400 | 10.0900 | SVR [16] | 0.4320 | 0.6100 | — | CART [16] | 0.4370 | 0.8000 | — | ANN-SVR [7] | 0.3000 | 0.4280 | 1.5570 | HYBRID-LIN [6] | 0.5100 | 0.7874 | 0.4700 | KNN | 1.9529 | 2.3329 | 8.4504 | RF-BPNN | 0.3199 | 0.4550 | 1.4591 |
| CL | IRLS [15] | 2.2100 | 3.3900 | 8.4100 | SVR [16] | 0.8900 | 1.6470 | — | CART [16] | 1.1570 | 1.8410 | — | ANN-SVR [7] | 0.973 | 1.5660 | 3.4550 | HYBRID-LIN [6] | 1.1800 | 2.0372 | 3.3300 | KNN | 1.8193 | 2.2651 | 7.1413 | RF-BPNN | 0.7765 | 1.1614 | 3.0000 |
|
|