Journal profile
Genetics Research is a fully open access journal providing a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations, developmental, evolutionary, and population genetics as well as ethical, legal and social aspects.
Editor spotlight
Genetics Research maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.
Special Issues
Latest Articles
More articlesClinical Significance of NKD Inhibitor of WNT Signaling Pathway 1 (NKD1) in Glioblastoma
Introduction. As the most malignant type of gliomas, glioblastoma is characterized with disappointing prognosis. Here, we aimed to investigate expression and function of NKD inhibitor of Wnt signaling pathway 1 (NKD1), an antagonist of Wnt-beta-catenin signaling pathways, in glioblastoma. Methods. The mRNA level of NKD1 was firstly retrieved from TCGA glioma dataset to evaluate its correlation with clinical characteristics and its value in prognosis prediction. Then, its protein expression level in glioblastoma was tested by immunohistochemistry staining in a retrospectively cohort collected from our medical center (n = 66). Univariate and multivariate survival analyses were conducted to assess its effect on glioma prognosis. Two glioblastoma cell lines, U87 and U251, were used to further investigate the tumor-related role of NKD1 through overexpression strategy in combination with cell proliferation assays. Immune cell enrichment in glioblastoma and its correlation with NKD1 level was finally assessed using bioinformatics analyses. Results. NKD1 shows a lower expression level in glioblastoma compared to that in the normal brain or other glioma subtypes, which is independently correlated to a worse prognosis in both the TCGA cohort and our retrospective cohort. Overexpressing NKD1 in glioblastoma cell lines can significantly attenuate cell proliferation. In addition, expression of NKD1 in glioblastoma is negatively correlated to the T cell infiltration, indicating it may have crosstalk with the tumor immune microenvironment. Conclusions. NKD1 inhibits glioblastoma progression and its downregulated expression indicates a poor prognosis.
The Identification of Immune-Related Biomarkers for Osteoarthritis Immunotherapy Based on Single-Cell RNA Sequencing Analysis
Osteoarthritis (OA) is a chronic musculoskeletal disease affecting approximately 500 million people worldwide. Globally, OA is one of the most common and leading causes of disability. Several genetic factors are involved in OA, including inherited genes, genetic susceptibility, and genetic predisposition. As the pathogenesis of OA is unknown, there are almost no effective treatments available to prevent the onset or progression of the disease. In recent years, many researchers focused on bioinformatics analysis to explore new biomarkers for the diagnosis, treatment, and prognosis of human diseases. In this work, we obtain the traditional RNA sequencing data of OA patients from the GEO database. By performing the differentially expressed analysis, we successfully obtain the genes that are closely associated with the OA. In addition, the Venn diagram was applied to evaluate the genes that are involved in OA and immune-related genes. The protein-protein interaction analysis was further conducted to explore the hub genes. The single-cell RNA sequencing analysis was used to evaluate the expression distribution of the MMP, VEGFA, SPI1, and IRF8 in synovial tissues of patients with osteoarthritis. Finally, the GSVA enrichment analysis discovered the potential pathways involved in OA patients. Our analysis provides a new direction for the exploration of the process of OA patients. In addition, VEGFA may be considered a promising biomarker in OA.
Sex-Biased Expression of Genes Allocated in the Autosomal Chromosomes: Blood LC-MS/MS Protein Profiling in Healthy Subjects
Background. Sex and gender have a large impact in human health and disease prediction. According to genomic/genetics, men differ from women by a limited number of genes in Y chromosome, while the phenotypes of the 2 sexes differ markedly. Methods. In this study, serum samples from six healthy Bahraini men and women were analyzed by liquid chromatography–mass spectrometry (LC-MS/MS). Bioinformatics databases and tools were used for protein/peptide (PPs) identification and gene localization. The PPs that differed significantly ( < 0.05, ANOVA) in abundance with a fold change (FC) of ≥1.5 were identified. Results. Revealed 20 PPs, 11 were upregulated in women with very high FC (up to 8 folds), and 9 were upregulated in men but with much lower FC. The PPs are encoded by genes located in autosomal chromosomes, indicative of sex-biased gene expression. The only PP related to sex, the sex hormone-binding globulin, was upregulated in women. The remaining PPs were involved in immunity, lipid metabolism, gene expression, connective tissue, and others, with some overlap in function. Conclusions. The upregulated PPs in men or women are mostly reflecting the functon or risk/protection provided by the PPs to the specific sex, e.g., Apo-B100 of LDLC. Finally, the basis of sex-biased gene expression and sex phenotypic differences needs further investigation.
Comprehensive Analysis Based on the Cancer Immunotherapy and Immune Activation of Gastric Cancer Patients
When it comes to aggressiveness and prognosis, immune cells play an important role in the microenvironment of gastric cancer (GC). Currently, there is no well-established evidence that immune status typing is reliable as a prognostic tool for gastric cancer. This study aimed to develop a genetic signature based on immune status typing for the stratification of gastric cancer risk. TCGA data were used for gene expression and clinical characteristics analysis. A ssGSEA algorithm was applied to type the gastric cancer cohorts. A multivariate and univariate Cox regression and a lasso regression were conducted to determine which genes are associated with gastric cancer prognosis. Finally, we were able to produce a 6-gene prognostic prediction model using immune-related genes. Further analysis revealed that the prognostic prediction model is closely related to the prognosis of patients with GC. Nomograms incorporating genetic signatures and risk factors produced better calibration results. The relationship between the risk score and gastric cancer T stage was also significantly correlated with multiple immune markers related to specific immune cell subsets. According to these results, patients’ outcomes and tumor immune cell infiltration correlate with risk scores. In addition, immune cellular-based genetic signatures can contribute to improved risk stratification for gastric cancer. Clinical decisions regarding immunotherapy and followup can be guided by these features.
miR-19-3p Targets PTEN to Regulate Cervical Cancer Cell Proliferation, Invasion, and Autophagy
Background. Cervical cancer is the second most common cancer among women worldwide. Extensive studies have shown that microRNAs (miRNA/miR) can regulate the formation, progression, and metastasis of cancer. The purpose of this study was to investigate the effect of miR-19-3p on the proliferation, invasion, and autophagy of cervical cancer cells and to explore the underlying mechanism. Methods. SiHa and HeLa cells were transfected with miR-19-3p mimic and inhibitor. miR-19-3p and PTEN expression were detected using real-time quantitative PCR and western blot, respectively. The binding between miR-19-3p and PTEN was predicted using Targetscan7.2 and verified by a dual-luciferase reporter gene assay. The effects of miR-19-3p on cell invasion and proliferation were evaluated by Transwell assays and MTT, respectively. The effect of miR-19-3p on autophagy was observed using fluorescence microscopy. Results. The expression of miR-19-3p in cervical cancer tissues and SiHa and HeLa cells was significantly upregulated, whereas the expression of PTEN was significantly downregulated. PTEN was one of the direct targets of miR-19-3p. The miR-19-3p mimic significantly reduced the apoptosis rate and autophagy and promoted cell proliferation and invasion of the SiHa and HeLa cells. Conclusion. In summary, miR-19b-3p can target PTEN to regulate the proliferation, invasion, and autophagy of cervical cancer cells. Our findings indicate the potential of miR-19-3p as a target for cervical cancer treatment in the future.
LncRNA MBNL1-AS1 Suppresses Cell Proliferation and Metastasis of Pancreatic Adenocarcinoma through Targeting Carcinogenic miR-301b-3p
Pancreatic adenocarcinoma (PAAD) has been a huge challenge to public health due to its increasing incidence, frequent early metastasis, and poor outcome. The molecular basis of tumorigenesis and metastasis in PAAD is largely unclear. Here, we identified a novel tumor-suppressor long noncoding RNA (lncRNA) MBNL1-AS1, in PAAD and revealed its downstream mechanism. Quantitative real-time PCR (qRT-PCR) data showed that MBNL1-AS1 expression was significantly downregulated in PAAD tissues and cells, which was closely associated with metastasis and poor prognosis. Cell counting kit-8 (CCK-8) assay, transwell assay, and western blot verified that overexpression of MBNL1-AS1 suppressed cell proliferation, migration, and epithelial mesenchymal transformation (EMT) behavior in PAAD cells. By using a dual luciferase reporter gene system, we confirmed that miR-301b-3p was a direct target of MBNL1-AS1. Further mechanismic study revealed that upregulation of miR-301b-3p abolished the inhibitory effect of MBNL1-AS1 overexpression on cell proliferation, tumorigenesis, migration and EMT. Our results demonstrate that MBNL1-AS1 plays a tumor-suppressive role in PAAD mainly by downregulating miR-301b-3p, providing a novel therapeutic target for PAAD.