Research Article
A Fast Fully Parallel Ant Colony Optimization Algorithm Based on CUDA for Solving TSP
Begin: | a ← 0 | released pheromone matrix deta_tao [n][n] ← 0 | //using nodes matrix R in Algorithm 1 | for i:1 to n | deta_tao [R [i-1]-1] [R [i]-1] ← deta_tao [R [i-1]-1] [R[i]-1] + Q | //Q is the pheromone release coefficient | end for | deta_tao [R [n-1]-1] [R [0]-1] ← deta_tao [R [n-1]-1] [R [0]-1] + Q | for i:1 to n | for j:1 to n | tao [i-1] [j-1] ← tao [i-1] [j-1] (1-ρ) + deta tao [i-1] [j-1] | //pheromone compensation | if tao [i-1] [j-1] ≤ (10−15/α (D [i-1] [j-1]) β/α)) | //D is the distance matrix | then | tao [i-1] [j-1] ← ((D [i-1] [j-1]) β/10k)1/α | end if | //constrain maximum of pheromone | if tao [i-1] [j-1] ≥ (1/(1-ρ) L) exp (-a) | //L is the length of current shortest path | then | tao [i-1] [j-1] ← (1/(1-ρ) L) exp (-a) | end if | end for | end for | //update shortest path | if L ≤ Best_Path_value | Best_Path_value ← L | a ← 0 | else if L = = Best_Path_value | a ← a + 1 | end if | end if | End. |
|