Research Article
A Fast Fully Parallel Ant Colony Optimization Algorithm Based on CUDA for Solving TSP
| Begin: | | a ← 0 | | released pheromone matrix deta_tao [n][n] ← 0 | | //using nodes matrix R in Algorithm 1 | | for i:1 to n | | deta_tao [R [i-1]-1] [R [i]-1] ← deta_tao [R [i-1]-1] [R[i]-1] + Q | | //Q is the pheromone release coefficient | | end for | | deta_tao [R [n-1]-1] [R [0]-1] ← deta_tao [R [n-1]-1] [R [0]-1] + Q | | for i:1 to n | | for j:1 to n | | tao [i-1] [j-1] ← tao [i-1] [j-1] (1-ρ) + deta tao [i-1] [j-1] | | //pheromone compensation | | if tao [i-1] [j-1] ≤ (10−15/α (D [i-1] [j-1]) β/α)) | | //D is the distance matrix | | then | | tao [i-1] [j-1] ← ((D [i-1] [j-1]) β/10k)1/α | | end if | | //constrain maximum of pheromone | | if tao [i-1] [j-1] ≥ (1/(1-ρ) L) exp (-a) | | //L is the length of current shortest path | | then | | tao [i-1] [j-1] ← (1/(1-ρ) L) exp (-a) | | end if | | end for | | end for | | //update shortest path | | if L ≤ Best_Path_value | | Best_Path_value ← L | | a ← 0 | | else if L = = Best_Path_value | | a ← a + 1 | | end if | | end if | | End. |
|