IET Information Security / 2024 / Article / Tab 18 / Research Article
MILP/MIQCP-Based Fully Automatic Method of Searching for Differential-Linear Distinguishers for SIMON-Like Ciphers Table 18 Twenty-three-round DL distinguisher for SIMECK64 with theoretical correlation
and experimental correlation
, where the theoretical probability of the differential part, the theoretical correlation of the DL part, and the theoretical correlation of the linear part are
, and
, respectively.
Differential part (optimal differential trail) 0 0000000000000000001000000000000000000000000000000101010000000000 7 0000000000000000000101000000000000000000000000000000100000000000 DL part −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 1.0 −1.0 1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 8 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.0 −1.0 −0.0 −1.0 1.0 −0.0 −1.0 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 1.0 −1.0 1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 9 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.5 −1.0 −0.5 −1.0 −0.0 −0.25 −0.0 −0.25 1.0 −0.0 0.5 −0.0 0.5 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.0 −1.0 −0.0 −1.0 1.0 −0.0 −1.0 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 10 −1.0 −1.0 −1.0 −1.0 −0.75 −1.0 −0.75 −1.0 −0.25 −0.4688 −0.25 −0.4688 −0.0 −0.0625 −0.0 −0.0625 −0.0 −0.0 −0.25 −0.0 0.25 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.5 −1.0 −0.5 −1.0 −0.0 −0.25 −0.0 −0.25 1.0 −0.0 0.5 −0.0 0.5 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 11 −1.0 −0.875 −1.0 −0.4688 −0.6426 −0.4688 −0.6426 −0.125 −0.1556 −0.0459 −0.1556 −0.0 −0.0156 −0.0 −0.0039 −0.0 −0.0 0.125 −0.0 −0.0625 −0.0 0.25 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.875 −1.0 −1.0 −1.0 −1.0 −0.75 −1.0 −0.75 −1.0 −0.25 −0.4688 −0.25 −0.4688 −0.0 −0.0625 −0.0 −0.0625 −0.0 −0.0 −0.25 −0.0 0.25 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 12 −0.6426 −0.77 −0.2637 −0.2727 −0.1510 −0.2727 −0.0385 −0.0445 −0.0033 −0.0192 −0.0 −0.0018 −0.0 −0.00006 −0.0 −0.0 −0.0 −0.0 −0.0078 −0.0 −0.0313 −0.0 −1.0 −1.0 −1.0 −1.0 −0.9375 −1.0 −0.9375 −1.0 −0.6426 −0.77 −1.0 −0.875 −1.0 −0.4688 −0.6426 −0.4688 −0.6426 −0.125 −0.1556 −0.0459 −0.1556 −0.0 −0.0156 −0.0 −0.0039 −0.0 −0.0 0.125 −0.0 −0.0625 −0.0 0.25 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.875 13 −0.4024 −0.1060 −0.09 −0.0226 −0.0514 −0.0057 −0.0074 −0.0001 −0.00075 −0.0 −0.00007 −0.0 −0.0 −0.0 −0.0 −0.0 0.0005 −0.0 −0.00098 −0.0 0.1211 −1.0 −0.9688 −1.0 −0.77 −0.8573 −0.77 −0.8573 −0.4060 −0.4024 −0.2864 −0.6426 −0.77 −0.2637 −0.2727 −0.1510 −0.2727 −0.0385 −0.0445 −0.0033 −0.0192 −0.0 −0.0018 −0.0 −0.00006 −0.0 −0.0 −0.0 −0.0 −0.0078 −0.0 −0.0313 −0.0 −1.0 −1.0 −1.0 −1.0 −0.9375 −1.0 −0.9375 −1.0 −0.6426 −0.77 14 −0.0240 −0.0193 −0.0016 −0.0036 −0.0002 −0.0005 −0.000001 −0.000008 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.000003 −0.0 0.0017 −0.0 −0.8573 −0.9142 −0.5413 −0.5320 −0.4311 −0.5320 −0.1955 −0.1542 −0.0660 −0.1048 −0.4024 −0.1060 −0.09 −0.0226 −0.0514 −0.0057 −0.0074 −0.0001 −0.0007 −0.0 −0.00007 −0.0 −0.0 −0.0 −0.0 −0.0 0.0005 −0.0 −0.00098 −0.0 0.1211 −1.0 −0.96875 −1.0 −0.77 −0.8573 −0.77 −0.8573 −0.4060 −0.4024 −0.2864 Linear part 0000000000000000000000010000000000000000000000000000000000000000 15 0000000000000000000000000000000000000000000000000000000100000000 16 0000000000000000000000010000000000000000000000000000000010000000 17 0000000000000000000000001000000000000000000000000000000101000000 18 0000000000000000000000010100000000000000000000000000000000100000 19 0000000000000000000000000010000000000000000000000000000101010000 20 0000000000000000000000010101000000000000000000000000000010000000 21 0000000000000000000000001000000000000000000000000000000100010000 22 0000000000000000000000010001000000000000000000000000000000000000 23 0000000000000000000000000000000000000000000000000000000100010000
Note : The experimental correlation of the first 14 (
) rounds is
under
sample sizes and 100 random keys, and the experimental correlation of the 9 rounds at the bottom is
under
sample sizes and 100 random keys. According to piling-up lemma, the experimental correlation is
.