Research Article

MILP/MIQCP-Based Fully Automatic Method of Searching for Differential-Linear Distinguishers for SIMON-Like Ciphers

Table 18

Twenty-three-round DL distinguisher for SIMECK64 with theoretical correlation and experimental correlation , where the theoretical probability of the differential part, the theoretical correlation of the DL part, and the theoretical correlation of the linear part are , and , respectively.

Differential part (optimal differential trail)

00000000000000000001000000000000000000000000000000101010000000000
70000000000000000000101000000000000000000000000000000100000000000

DL part

−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.01.0−1.01.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.01.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

8−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−0.0−1.0
−0.0−1.01.0−0.0−1.0−0.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.01.0−1.01.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

9−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−0.5−1.0−0.5−1.0−0.0−0.25−0.0
−0.251.0−0.00.5−0.00.5−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−0.0−1.0
−0.0−1.01.0−0.0−1.0−0.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

10−1.0−1.0−1.0−1.0−0.75−1.0−0.75−1.0
−0.25−0.4688−0.25−0.4688−0.0−0.0625−0.0−0.0625
−0.0−0.0−0.25−0.00.25−0.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−0.5−1.0−0.5−1.0−0.0−0.25−0.0
−0.251.0−0.00.5−0.00.5−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

11−1.0−0.875−1.0−0.4688−0.6426−0.4688−0.6426−0.125
−0.1556−0.0459−0.1556−0.0−0.0156−0.0−0.0039−0.0
−0.00.125−0.0−0.0625−0.00.25−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−0.875
−1.0−1.0−1.0−1.0−0.75−1.0−0.75−1.0
−0.25−0.4688−0.25−0.4688−0.0−0.0625−0.0−0.0625
−0.0−0.0−0.25−0.00.25−0.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

12−0.6426−0.77−0.2637−0.2727−0.1510−0.2727−0.0385−0.0445
−0.0033−0.0192−0.0−0.0018−0.0−0.00006−0.0−0.0
−0.0−0.0−0.0078−0.0−0.0313−0.0−1.0−1.0
−1.0−1.0−0.9375−1.0−0.9375−1.0−0.6426−0.77
−1.0−0.875−1.0−0.4688−0.6426−0.4688−0.6426−0.125
−0.1556−0.0459−0.1556−0.0−0.0156−0.0−0.0039−0.0
−0.00.125−0.0−0.0625−0.00.25−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−0.875

13−0.4024−0.1060−0.09−0.0226−0.0514−0.0057−0.0074−0.0001
−0.00075−0.0−0.00007−0.0−0.0−0.0−0.0
−0.00.0005−0.0−0.00098−0.00.1211−1.0−0.9688
−1.0−0.77−0.8573−0.77−0.8573−0.4060−0.4024−0.2864
−0.6426−0.77−0.2637−0.2727−0.1510−0.2727−0.0385−0.0445
−0.0033−0.0192−0.0−0.0018−0.0−0.00006−0.0−0.0
−0.0−0.0−0.0078−0.0−0.0313−0.0−1.0−1.0
−1.0−1.0−0.9375−1.0−0.9375−1.0−0.6426−0.77

14−0.0240−0.0193−0.0016−0.0036−0.0002−0.0005−0.000001−0.000008
−0.0−0.0−0.0−0.0−0.0−0.0
−0.0−0.0−0.000003−0.00.0017−0.0−0.8573−0.9142
−0.5413−0.5320−0.4311−0.5320−0.1955−0.1542−0.0660−0.1048
−0.4024−0.1060−0.09−0.0226−0.0514−0.0057−0.0074−0.0001
−0.0007−0.0−0.00007−0.0−0.0−0.0−0.0
−0.00.0005−0.0−0.00098−0.00.1211−1.0−0.96875
−1.0−0.77−0.8573−0.77−0.8573−0.4060−0.4024−0.2864

Linear part

0000000000000000000000010000000000000000000000000000000000000000
150000000000000000000000000000000000000000000000000000000100000000
160000000000000000000000010000000000000000000000000000000010000000
170000000000000000000000001000000000000000000000000000000101000000
180000000000000000000000010100000000000000000000000000000000100000
190000000000000000000000000010000000000000000000000000000101010000
200000000000000000000000010101000000000000000000000000000010000000
210000000000000000000000001000000000000000000000000000000100010000
220000000000000000000000010001000000000000000000000000000000000000
230000000000000000000000000000000000000000000000000000000100010000

Note: The experimental correlation of the first 14 () rounds is under sample sizes and 100 random keys, and the experimental correlation of the 9 rounds at the bottom is under sample sizes and 100 random keys. According to piling-up lemma, the experimental correlation is .