IET Information Security / 2024 / Article / Tab 19 / Research Article
MILP/MIQCP-Based Fully Automatic Method of Searching for Differential-Linear Distinguishers for SIMON-Like Ciphers Table 19 Twenty-four-round DL distinguisher for SIMECK64 with theoretical correlation
and experimental correlation
, where the theoretical probability of the differential part, the theoretical correlation of the DL part, and the theoretical correlation of the linear part are
, and
, respectively.
Differential part (optimal differential trail) 0 0000000000000000001000000000000000000000000000000101010000000000 7 0000000000000000000101000000000000000000000000000000100000000000 DL part −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 1.0 −1.0 1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 8 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.0 −1.0 −0.0 −1.0 1.0 −0.0 −1.0 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 1.0 −1.0 1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 9 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.5 −1.0 −0.5 −1.0 −0.0 −0.25 −0.0 −0.25 1.0 −0.0 0.5 −0.0 0.5 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.0 −1.0 −0.0 −1.0 1.0 −0.0 −1.0 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 10 −1.0 −1.0 −1.0 −1.0 −0.75 −1.0 −0.75 −1.0 −0.25 −0.4688 −0.25 −0.4688 −0.0 −0.0625 −0.0 −0.0625 −0.0 −0.0 −0.25 −0.0 0.25 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.5 −1.0 −0.5 −1.0 −0.0 −0.25 −0.0 −0.25 1.0 −0.0 0.5 −0.0 0.5 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 11 −1.0 −0.875 −1.0 −0.4688 −0.6426 −0.4688 −0.6426 −0.125 −0.1556 −0.0459 −0.1556 −0.0 −0.0156 −0.0 −0.0039 −0.0 −0.0 0.125 −0.0 −0.0625 −0.0 0.25 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.875 −1.0 −1.0 −1.0 −1.0 −0.75 −1.0 −0.75 −1.0 −0.25 −0.4688 −0.25 −0.4688 −0.0 −0.0625 −0.0 −0.0625 −0.0 −0.0 −0.25 −0.0 0.25 −0.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 12 −0.6426 −0.77 −0.2637 −0.2727 −0.1510 −0.2727 −0.0385 −0.0445 −0.0033 −0.0192 −0.0 −0.0018 −0.0 −0.00006 −0.0 −0.0 −0.0 −0.0 −0.0078 −0.0 −0.03125 −0.0 −1.0 −1.0 −1.0 −1.0 −0.9375 −1.0 −0.9375 −1.0 −0.6426 −0.77 −1.0 −0.875 −1.0 −0.4688 −0.6426 −0.4688 −0.6426 −0.125 −0.1556 −0.0459 −0.1556 −0.0 −0.0156 −0.0 −0.0039 −0.0 −0.0 0.125 −0.0 −0.0625 −0.0 0.25 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −0.875 13 −0.4024 −0.1060 −0.09 −0.0226 −0.0514 −0.0057 −0.0074 −0.0001 −0.0007 −0.0 −0.00007 −0.0 −0.0 −0.0 −0.0 −0.0 0.0004 −0.0 −0.00098 −0.0 0.1211 −1.0 −0.9688 −1.0 −0.77 −0.8573 −0.77 −0.8573 −0.4060 −0.4024 −0.2864 −0.6426 −0.77 −0.2637 −0.2727 −0.1510 −0.2727 −0.0385 −0.0445 −0.0033 −0.0192 −0.0 −0.0018 −0.0 −0.00006 −0.0 −0.0 −0.0 −0.0 −0.0078 −0.0 −0.0313 −0.0 −1.0 −1.0 −1.0 −1.0 −0.9375 −1.0 −0.9375 −1.0 −0.6426 −0.77 14 −0.0240 −0.0193 −0.0016 −0.0036 −0.0002 −0.0005 −0.000001 −0.000008 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0 −0.000003 −0.0 0.0017 −0.0 −0.8573 −0.9142 −0.5413 −0.5320 −0.4311 −0.5320 −0.1955 −0.1542 −0.0660 −0.1048 −0.4024 −0.1060 −0.09 −0.0226 −0.0514 −0.0057 −0.0074 −0.0001 −0.0007 −0.0 −0.00007 −0.0 −0.0 −0.0 −0.0 −0.0 0.0005 −0.0 −0.00098 −0.0 0.1211 −1.0 −0.9688 −1.0 −0.77 −0.8573 −0.77 −0.8573 −0.4060 −0.4024 −0.2864 Linear part 0000000000000000000000010000000000000000000000000000001000000000 15 0000000000000000000000100000000000000000000000000000000000000000 16 0000000000000000000000100000000000000000000000000000001000000000 17 0000000000000000000000100000000000000000000000000000000100000000 18 0000000000000000000000010000000000000000000000000000001010000000 19 0000000000000000000000101000000000000000000000000000000001000000 20 0000000000000000000000000100000000000000000000000000001010100000 21 0000000000000000000000101010000000000000000000000000000100000000 22 0000000000000000000000010000000000000000000000000000001000100000 23 0000000000000000000000100010000000000000000000000000000000000000 24 0000000000000000000000000000000000000000000000000000001000100000
Note : The experimental correlation of the first 14 (
) rounds is
under
sample sizes and 100 random keys, and the experimental correlation of the 10 rounds at the bottom is
under
sample sizes and 100 random keys. According to piling-up lemma, the experimental correlation is
.