Research Article

MILP/MIQCP-Based Fully Automatic Method of Searching for Differential-Linear Distinguishers for SIMON-Like Ciphers

Table 9

Twenty-round DL distinguisher for SIMON64 with theoretical correlation and experimental correlation , where the theoretical probability of the differential part, the theoretical correlation of the DL part, and the theoretical correlation of the linear part are , and , respectively.

Differential part (optimal differential trail)

00000000000100000000000000000000000000000100010001000000000000000
70000000000001000100000000000000000000000000000100000000000000000

DL part

−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.01.0−1.0−1.0−1.0
1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.01.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

8−1.0−1.0−1.0−1.0−0.0−1.0−1.0−1.0
−0.0−1.01.0−0.0−1.0−1.0−1.0−0.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.01.0−1.0−1.0−1.0
1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

9−0.5−1.0−0.0−0.25−1.0−1.0−0.0−0.25
1.0−0.0−0.5−1.01.0−0.0−0.5−1.0
1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−0.5−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−0.0−1.0−1.0−1.0
−0.0−1.01.0−0.0−1.0−1.0−1.0−0.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0

10−0.0−0.0625−0.4688−1.0−0.0−0.06250.4688−0.0
−0.0−0.75−1.0−0.0−0.25−0.751.0−0.0
−1.0−1.0−1.0−1.0−0.75−1.0−1.0−1.0
−0.75−1.0−0.25−0.4688−1.0−1.0−0.25−0.4688
−0.5−1.0−0.0−0.25−1.0−1.0−0.0−0.25
1.0−0.0−0.5−1.01.0−0.0−0.5−1.0
1.0−1.0−1.0−1.0−1.0−1.0−1.0−1.0
−1.0−1.0−1.0−1.0−0.5−1.0−1.0−1.0

11−0.0623−0.6426−0.0−0.00390.1556−0.0−0.0−0.0469
0.875−0.0−0.0625−0.4688−0.7656−0.0−0.25−1.0
0.875−1.0−0.4688−0.6426−1.0−1.0−0.4688−0.6426
−0.125−0.1556−0.5393−1.0−0.0625−0.1556−0.0−0.0156
−0.0−0.0625−0.4688−1.0−0.0−0.06250.4688−0.0
−0.0−0.75−1.0−0.0−0.25−0.751.0−0.0
−1.0−1.0−1.0−1.0−0.75−1.0−1.0−1.0
−0.75−1.0−0.25−0.4688−1.0−1.0−0.25−0.4688

12−0.0−0.000060.0195−0.0−0.0−0.0007−0.1342−0.0
−0.0−0.1868−0.4129−0.0−0.0313−0.4688−0.6426−0.0
−0.2637−0.2727−0.6321−1.0−0.1868−0.2727−0.0513−0.0445
−0.1241−0.6321−0.0078−0.0195−0.0−0.0039−0.0040−0.0837
−0.0623−0.6426−0.0−0.00390.1556−0.0−0.0−0.0469
0.875−0.0−0.0625−0.4688−0.7656−0.0−0.25−1.0
0.875−1.0−0.4688−0.6426−1.0−1.0−0.4688−0.6426
−0.125−0.1556−0.5393−1.0−0.0625−0.1556−0.0−0.0156

130.0003−0.0−0.00.0054−0.0−0.0−0.0022
0.1355−0.0−0.0008−0.1133−0.2144−0.0−0.0173−0.09
0.1978−0.6659−0.0441−0.0530−0.0163−0.0117−0.0153−0.1237
−0.0004−0.0008−0.0−0.0010−0.00006−0.0033−0.0
−0.0−0.000060.0195−0.0−0.0−0.0007−0.1342−0.0
−0.0−0.1868−0.4129−0.0−0.0313−0.4688−0.6426−0.0
−0.2637−0.2727−0.6321−1.0−0.1868−0.2727−0.0513−0.0445
−0.1241−0.6321−0.0078−0.0195−0.0−0.0039−0.0040−0.0837

14−0.0−0.00002−0.0−0.00.0046−0.0
−0.0−0.0088−0.0257−0.0−0.00014−0.01090.0352−0.0
−0.0048−0.0038−0.0027−0.0030−0.0007−0.0086
−0.0−0.0002−0.00001−0.0−0.0
0.0003−0.0−0.00.0054−0.0−0.0−0.0022
0.1355−0.0−0.00080−0.1133−0.2144−0.0−0.0173−0.0900
0.1978−0.6659−0.0441−0.0530−0.0163−0.0117−0.0153−0.1237
−0.0004−0.0008−0.0−0.0010−0.00006−0.0033−0.0

Linear part

0000000000000000000000000000000000000000000000000100000000000000
150000000000000000010000000000000000000000000000000001000000000000
160000000000000000000100000000000000000000000000000100010000000000
170000000000000000010001000000000000000000000000000000000100000000
180000000000000000000000010000000000000000000000000100010001000000
190000000000000000010001000100000000000000000000000001000000010000
200000000000000000000100000001000000000000000000000100000001000100

Note: The experimental correlation of the first 14 () rounds is under sample sizes and 100 random keys, the experimental correlation of the 6 rounds at the bottom is under sample sizes and 100 random keys. According to piling-up lemma, the experimental correlation is .