Research Article
IRR-Net: A Joint Learning Framework for Image Reconstruction and Recognition of Photoacoustic Tomography
Table 3
Evaluation metrics for binary classification in the simulation study.
| Method | Acc | Sens | Spec | F1 score | Runtime (s) |
| HH (5 DGD + GoogLeNet) | 0.9574 | 0.9535 | 0.9691 | 0.9711 | 21.4 |
| IRR-Net | 0.9474 | 0.9324 | 0.9524 | 0.9572 | 10.6 |
| HH (DGD + U-Net+ResNet) | 0.9474 | 0.9324 | 0.9524 | 0.9572 | 28.6 |
| LH | 1 DGD + GoogLeNet | 0.9277 | 0.9189 | 0.9486 | 0.9503 | 9.3 | TR + GoogLeNet | 0.9184 | 0.9098 | 0.9440 | 0.9436 | 3.2 | TR + AlexNet | 0.9012 | 0.8910 | 0.9316 | 0.9311 | 2.7 | TR + ResNet | 0.8987 | 0.8892 | 0.9303 | 0.9275 | 2.7 |
| HL (5 DGD + SVM) | 0.8926 | 0.8874 | 0.9271 | 0.9208 | 20.1 |
| LL (TR + SVM) | 0.8739 | 0.8665 | 0.8961 | 0.9117 | 1.4 |
|
|