Research Article
IRR-Net: A Joint Learning Framework for Image Reconstruction and Recognition of Photoacoustic Tomography
Table 4
Evaluation metrics for multiclass classification in the simulation study.
| Method | Acc | F1 score | Runtime (s) | Cal | FC | LP | MC |
| HH (5 DGD + GoogLeNet) | 0.9243 | 0.9146 | 0.9322 | 0.8801 | 0.8980 | 29.1 |
| IRR-Net | 0.9191 | 0.9089 | 0.9161 | 0.8702 | 0.8878 | 10.7 |
| HH (DGD + U-Net+ResNet) | 0.9191 | 0.9089 | 0.9161 | 0.8702 | 0.8878 | 33.6 |
| LH | 1 DGD + GoogLeNet | 0.9002 | 0.8913 | 0.8867 | 0.8561 | 0.8705 | 9.8 | TR + GoogLeNet | 0.8976 | 0.8891 | 0.8555 | 0.8405 | 0.8627 | 3.1 | TR + AlexNet | 0.8776 | 0.8702 | 0.8415 | 0.8245 | 0.8229 | 2.7 | TR + ResNet | 0.8714 | 0.8649 | 0.8358 | 0.8191 | 0.8203 | 2.7 |
| HL (5 DGD + SVM) | 0.8617 | 0.8587 | 0.8302 | 0.8238 | 0.8189 | 28.6 |
| LL (TR + SVM) | 0.8575 | 0.8461 | 0.8266 | 0.8212 | 0.7968 | 1.4 |
|
|
CAL, FC, LP, and MC stand for calcification, lipid pool, fibrous cap, and mixed calcification, respectively.
|