Research Article
IRR-Net: A Joint Learning Framework for Image Reconstruction and Recognition of Photoacoustic Tomography
Table 7
Evaluation metrics for binary classification of experimental phantom images.
| Method | Acc | Sens | Spec | F1 score | Runtime (s) |
| HH (5 DGD + GoogLeNet) | 0.9211 | 0.9338 | 0.8879 | 0.9502 | 23.6 |
| IRR-Net | 0.9108 | 0.9237 | 0.8721 | 0.9395 | 11.8 |
| HH (DGD + U-Net+ResNet) | 0.9108 | 0.9237 | 0.8721 | 0.9395 | 30.2 |
| LH | 1 DGD + GoogLeNet | 0.8907 | 0.9123 | 0.8516 | 0.9206 | 10.3 | TR + GoogLeNet | 0.8743 | 0.8873 | 0.8354 | 0.9137 | 3.1 | TR + AlexNet | 0.8562 | 0.8694 | 0.8166 | 0.9007 | 2.6 | TR + ResNet | 0.8511 | 0.8647 | 0.8132 | 0.8916 | 2.6 |
| HL (5 DGD + SVM) | 0.8461 | 0.8573 | 0.8094 | 0.8812 | 22.7 |
| LL (TR + SVM) | 0.8088 | 0.8221 | 0.7689 | 0.8658 | 1.5 |
|
|