Research Article
IRR-Net: A Joint Learning Framework for Image Reconstruction and Recognition of Photoacoustic Tomography
Table 8
Evaluation metrics for multiclass classification of in vivo images.
| Method | Acc | F1 score | Runtime (s) | Mandible | Tongue | Liver | Kidney | Spinal cord | Abdom aorta | Rib |
| HH (5 DGD + GoogLeNet) | 0.8134 | 0.8067 | 0.8203 | 0.7946 | 0.8286 | 0.7798 | 0.7802 | 0.6251 | 24.1 |
| IRR-Net | 0.7941 | 0.7855 | 0.7995 | 0.7667 | 0.8109 | 0.7657 | 0.7575 | 0.6135 | 12.0 |
| HH (DGD + U-Net+ResNet) | 0.7941 | 0.7855 | 0.7995 | 0.7667 | 0.8109 | 0.7657 | 0.7575 | 0.6135 | 33.7 |
| LH | 1 DGD + GoogLeNet | 0.7884 | 0.7811 | 0.7805 | 0.7602 | 0.7968 | 0.7613 | 0.7536 | 0.5904 | 10.9 | TR + GoogLeNet | 0.7733 | 0.7766 | 0.7741 | 0.7545 | 0.7839 | 0.7574 | 0.7504 | 0.5745 | 3.1 | TR + AlexNet | 0.7686 | 0.7705 | 0.7687 | 0.7478 | 0.7743 | 0.7536 | 0.7488 | 0.5544 | 2.7 | TR + ResNet | 0.7677 | 0.7700 | 0.7583 | 0.7443 | 0.7725 | 0.7524 | 0.7465 | 0.5537 | 2.7 |
| HL (5 DGD + SVM) | 0.7670 | 0.7698 | 0.7452 | 0.7401 | 0.7708 | 0.7515 | 0.7440 | 0.5531 | 21.5 |
| LL (TR + SVM) | 0.7560 | 0.7681 | 0.7227 | 0.7354 | 0.7686 | 0.7503 | 0.7380 | 0.5433 | 1.5 |
|
|