Research Article
Deep Anomaly Detection with Attention (DADA): A Novel Approach for Identifying Multipath Interference in Radar Signals
Table 1
Performance metrics for the four methods (test set with single multipath signal).
| Method | LFM (L) | NLFM (N) | BPSK (B) | QPSK (Q) | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 |
| CCF | 0.709 | 1.000 | 0.829 | 0.687 | 1.000 | 0.814 | 0.665 | 0.995 | 0.797 | 0.689 | 1.000 | 0.816 | SC | 0.657 | 1.000 | 0.793 | 0.678 | 1.000 | 0.808 | 0.586 | 1.000 | 0.739 | 0.664 | 1.000 | 0.798 | WRFCCF | 0.707 | 0.990 | 0.825 | 0.697 | 0.990 | 0.818 | 0.670 | 0.935 | 0.460 | 0.604 | 0.980 | 0.748 | AnoGAN | 0.673 | 0.970 | 0.795 | 0.803 | 0.960 | 0.874 | 0.498 | 0.995 | 0.664 | 0.593 | 0.870 | 0.705 | EGBAD | 0.668 | 0.995 | 0.799 | 0.921 | 0.995 | 0.956 | 0.505 | 0.990 | 0.669 | 0.619 | 0.975 | 0.757 | GANomaly | 0.872 | 1.000 | 0.931 | 0.854 | 0.899 | 0.876 | 0.576 | 0.953 | 0.719 | 0.898 | 0.605 | 0.723 | DADA | 1.000 | 0.980 | 0.990 | 1.000 | 0.960 | 0.979 | 0.731 | 0.925 | 0.817 | 0.866 | 0.905 | 0.885 |
|
|