Research Article
Sensitive Wavelengths Selection in Identification of Ophiopogon japonicus Based on Near-Infrared Hyperspectral Imaging Technology
Table 3
Results of PLS-DA models using different selected wavelengths.
| | Methods | Variables | Calibration | Prediction | | Correct number | Identification accuracy/% | Correct number | Identification accuracy/% | |
| | Raw | 512 | 449 | 99.8 | 214 | 95.1 | | | SPA | 5 | 417 | 92.7 | 210 | 93.3 | −1.78 | | RC | 7 | 413 | 91.8 | 211 | 93.8 | −1.28 | | LW | 8 | 402 | 89.3 | 199 | 88.4 | −6.60 | | UVE | 291 | 449 | 99.8 | 219 | 97.3 | 0.95 | | UVE-SPA | 12 | 449 | 99.8 | 216 | 96.0 | 0.88 | | CARS | 105 | 449 | 99.8 | 221 | 98.2 | 2.46 | | iPLS | 32 | 430 | 95.6 | 199 | 88.4 | −6.28 | | BiPLS | 208 | 450 | 100 | 223 | 99.1 | 2.38 | | FiPLS | 480 | 449 | 99.8 | 219 | 97.3 | 0.14 | | GA-PLS | 85 | 446 | 99.1 | 217 | 96.4 | 1.08 |
|
|