Research Article

A Vortex Identification Method Based on Extreme Learning Machine

Table 2

The performance of different methods in the triangle flow field of and the square flow field of .

CasesMethodsPrecision (%)Recall (%)Training timeExecution time (s)

Triangle-criterion89.1542.8\1.7
-criterion87.738.4\2.1
-criterion89.141.4\2.5
-criterion88.941.35\4.3
Random Forest92.971.1112 s12.7
AdaBoost85.554.3150 s18.14
Vortex-CNN95.8588.2>24 h19.45
Vortex-Seg-Net96.6494.72>24 h0.81
Vortex-ELM-Net96.1789.490.72 s2.4
IVD100100\227

Square-criterion93.2261.6\3.6
-criterion89.760.4\4.4
-criterion93.156.7\5.3
-criterion93.160.7\8.6
Random Forest87.3590.1112 s24.6
AdaBoost88.283.44150 s33.2
Vortex-CNN84.495.7>24 h41.4
Vortex-Seg-Net86.6590.98>24 h1.24
Vortex-ELM-Net92.691.590.72 s3.9
IVD100100\433