Research Article
A Vortex Identification Method Based on Extreme Learning Machine
Table 2
The performance of different methods in the triangle flow field of
and the square flow field of
.
| Cases | Methods | Precision (%) | Recall (%) | Training time | Execution time (s) |
| Triangle | -criterion | 89.15 | 42.8 | \ | 1.7 | -criterion | 87.7 | 38.4 | \ | 2.1 | -criterion | 89.1 | 41.4 | \ | 2.5 | -criterion | 88.9 | 41.35 | \ | 4.3 | Random Forest | 92.9 | 71.1 | 112 s | 12.7 | AdaBoost | 85.5 | 54.3 | 150 s | 18.14 | Vortex-CNN | 95.85 | 88.2 | >24 h | 19.45 | Vortex-Seg-Net | 96.64 | 94.72 | >24 h | 0.81 | Vortex-ELM-Net | 96.17 | 89.4 | 90.72 s | 2.4 | IVD | 100 | 100 | \ | 227 |
| Square | -criterion | 93.22 | 61.6 | \ | 3.6 | -criterion | 89.7 | 60.4 | \ | 4.4 | -criterion | 93.1 | 56.7 | \ | 5.3 | -criterion | 93.1 | 60.7 | \ | 8.6 | Random Forest | 87.35 | 90.1 | 112 s | 24.6 | AdaBoost | 88.2 | 83.44 | 150 s | 33.2 | Vortex-CNN | 84.4 | 95.7 | >24 h | 41.4 | Vortex-Seg-Net | 86.65 | 90.98 | >24 h | 1.24 | Vortex-ELM-Net | 92.6 | 91.5 | 90.72 s | 3.9 | IVD | 100 | 100 | \ | 433 |
|
|