Research Article

Analytical Redundancy of Variable Cycle Engine Based on Proper Net considering Multiple Input Variables and the Whole Engine’s Degradation

Table 3

Performances of different convolutional neural networks.

NetAverage relative error/%LayersTraining time/min (10 epochs)Calculation time/s (1000 points)Macroscopic structure

Proper net0.841st491st251st0.36451st
Dense net1.177075351.4221
Mobile net1.25153730.3716
Res1011.331431550.9655
Alex net12.712460.1284
Vgg19 net7.4340260.5133
Google net2.05143400.2317
Squeeze net3.8568170.1192

Yellow rectangle: convolution layer; red rectangle: activation layer; violet rectangle: pooling layer; green rectangle: normalization layer; white rectangle: fusion layer.