Research Article

DANC-Net: Dual-Attention and Negative Constraint Network for Point Cloud Classification

Table 3

Classification performance on ModelNet40. (The top three accuracies are highlighted by bold, underline, and italic.)

MethodsInputPoints (k)mA (%)OA (%)

VoxNet (IROS 2015)Points183.085.9
3DShapeNets (CVPR 2016)Points177.384.7
PointNet (CVPR 2017)Points186.289.2
PointNet++ (CVPR 2017)Points + normal587.991.9
Kd-Net (ICCV 2017)Points3288.591.8
PointCNN (NeurIPS 2018)Points + normal188.192.2
DGCNN (TOG 2019)Points190.292.3
A-CNN (CVPR 2019)Points + normal189.992.2
SRN-PointNet++ (CVPR 2019)Points191.5
PointHop (IEEE T MULTIMEDIA 2020)Points184.489.1
DGANet (remote sensing 2021)Points189.492.3
MRFGAT (INT J ANTENN PROPAG 2021)Points190.192.5
OursPoints + normal190.592.9

Input and points represent the input data type and the number of sampling points, respectively.