Research Article
Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model
Table 2
Detail of the architecture of U-Net.
| Layers | Architectures | Output |
| Input | Image () | | conv1 | 2@Conv ()/ | | | | conv2 | 2@Conv ()/ | | | | conv3 | 2@Conv ()/ | | | | conv4 | 2@Conv ()/ | | drop4 | Dropout () | | | | conv5 | 2@Conv ()/ | | drop5 | Dropout () | | up6 | Upsampling conv ()/Relu | | Concatination | [drop4, up6] | | conv6 | 2@Conv ()/ | | up7 | Upsampling conv ()/Relu | | Concatination | [conv3, up7] | | conv7 | 2@Conv ()/ | | up8 | Up-sampling conv ()/Relu | | Concatination | [conv2, up8] | | conv8 | 2@Conv ()/ | | up9 | Upsampling conv ()/Relu | | Concatination | [conv1, up9] | | conv9 | 2@Conv ()/ | | conv10 | Conv () Sigmoid | | Output | Segmentation map | |
|
|