Research Article
Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-Based Noninvasive Digital System
Algorithm 1
Step by step skin cancer segmentation and classification using ViT.
| 1. Input: IDERMATOSCOPY, SegNetSAM | | IDERMATOSCOPY= the 20X Dermatoscopy images | | SegNetSAM= the SAM segmentation | | 2. Initialization: | | i. I = Resize IDERMATOSCOPYinto 224 × 224-pixel | | ii. ISEG = Apply SegNetSAM on I | | iii. ISEG = Apply Binary Mask on ISEG | | 3. ViT: | | i. Input: ISEG | | ii. IPATCH = Convert ISEG into 14×14 patches | | iii. While m: = IPATCH ≤ IPATCH Count | | i. ILP[m] = IPATCHUNROLLED[m] × E [][] | | ii. D = Concatenate(EPOS[m], ILP[m]) | | iv. End While | | v. While n <= L do | | i. D'n = MSA (LN(Dn-1)) + Dn-1 | | ii. Dn = MLP (LN (D'n)) + D'n | | vi. End While | | vii. IFINAL = LN(DL) | | 4. If IFINAL≤ Threshold Value Then | | Result: = “Benign” | | Else | | Result: = “Malignant” | | End If | | 5. Return Result |
|