Research Article

Analytical Solution of Nonlinear Dynamics of a Self-Igniting Reaction-Diffusion System Using Modified Adomian Decomposition Method

Algorithm 1

MATLAB program to find the numerical solution of nonlinear differential equation (1) when the time ( ) is large (or) (3).
function pdex4
m = 0;
x = linspace(0,1);
t = linspace(0,100000);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
figure
plot(x,u1(end,:))
title(‘u1(x,t)')
xlabel(‘Distance x')
ylabel(‘u1(x,2)')
%––––––––––––––––––––––––––––––––––
figure
plot(x,u2(end,:))
title(‘u2(x,t)')
xlabel(‘Distance x')
ylabel(‘u2(x,2)')
%––––––––––––––––––––––––––––––––––
function c,f,s = pdex4pde(x,t,u,DuDx)
c = 1; 1 ;
f = 1; 1 .* DuDx;
l = 0.233;
p = 35000;
b = 4.287;
g = 13.6;
F = −p*u(1)*exp(−g/u(2))/l;
F1 = b*p*u(1)*exp(−g/u(2));
s = F; F1 ;
%––––––––––––––––––––––––––––––––––
function u0 = pdex4ic(x);
u0 = 1; 1 ;
%––––––––––––––––––––––––––––––––––
function pl,ql,pr,qr = pdex4bc(xl,ul,xr,ur,t)
pl = ul(1)−1; ul(2)−1 ;
ql = 0; 0 ;
pr = 0; ur(2)−1 ;
qr = 1; 0 ;