Research Article

Numerical Study to Define Initial Thermal Integration Window for Methane Oxidative Coupling with Dehydroaromatization Reactors

Table 7

Results of the tabulated coupling methodology for case 1 in Table 8.

Input layerReactor optimizerOutput layer
PriorityNameUnitsInitial inputConstraintsOptimum inputNameUnitsInitial outputOptimum outputTargets

OCMOptimization case
1Inlet temperature°C800800800C2 yield%10.141.3>30
2Inlet pressureatm111CH4 conv.%22.552.8
3Feed flow rateStd m3/h10,00010,00010,000O2 conv.%81.7100.0
4Feed composition (CH4)%61.761.761.7Reynold’s no. (particle)13.359.8
5Feed composition (inerts)%17.817.817.8Δp (% of Pin)%19.013.6<20
6Superficial velocitym/s2.60.2 – 3.53.9Tpeak (Tmax -Tin)K21.984.3<100
7Particle dia.mm10.5 – 5.03.0Tlower (Tin-Tmin)K39.70.0
8Tube dia.cm0.80.5 – 30.01.9σTK19.820.7
9Gas void fraction0.50.50.5Space timesec0.20.3
10Catalyst void fraction0.50.01 – 0.50.5Catalyst weightkgs78.0121.9
11Flow directionCocurrentCocurrentCocurrentNo. of tubes200001000
12Channel lengthcm45.05–100100.0
13Tube wall thicknessmm5.02–205.0
14UoverallW/m2.K10001000–25001200
MDAOptimization case
14Inlet temperature°C800800800C6 yield%1.40.5
15Inlet pressureatm111CH4 conv.%9.610.010
16Feed flow rateStd m3/h72,32072,32072,320Reynold’s no. (particle)2.9813.4
17Feed composition (inerts)%555Δp (% of pin)%2.10.9<20
18Superficial velocitym/s0.50.2–3.50.8Tpeak (Tmax -Tin)K1.29.3
19Particle dia.mm1.00.5–5.03.0Tlower (Tin -Tmin)K56.960.3<100
20Tube dia.cm6.30.5–30.021.8σTK18.123.4
21Gas void fraction0.50.50.5Space timesec0.91.3
22Catalyst void fraction0.50.1–0.50.5Catalyst weightkgs45069086