Research Article

Using a Clinical Decision Support System to Improve Anticoagulation in Patients with Nonvalve Atrial Fibrillation in China’s Primary Care Settings: A Feasibility Study

Table 1

Basic demographics of the subjects.

Software group (n = 53)Control group (n = 31)Total (n = 84)2/Z/t

Gender, n (%)$0.0000.991
 Male29 (54.7)17 (54.8)46 (54.8)
 Female24 (45.3)14 (45.2)38 (45.2)
Age (y), mean (SD&)#79.96 (7.025)73.58 (7.205)75.71 (7.237)2.1090.038
Hypertension, n (%)$50 (94.3)26 (83.9)76 (90.5)2.4880.115
Heart failure, n (%)$5 (9.4)4 (14.8)9 (11.3)0.5190.471
Diabetes, n (%)$17 (32.1)11 (35.5)28 (33.3)0.1020.749
Stroke/TIA/thromboembolism history, n (%)$13 (24.5)3 (11.1)16 (20.0)2.0130.156
Antiplatelets or NSAIDs, n (%)$20 (37.7)8 (29.6)28 (35.0)0.5170.472
CHA2DS2-VASc score, n (%)$1.1830.277
252 (98.1)29 (93.5)81 (96.4)
 <21 (1.9)2 (6.5)3 (3.6)
HAS-BLED score, n (%)$4.3630.037
333 (62.3)12 (38.7)45 (53.6)
 <320 (37.7)19 (61.3)39 (46.4)
Clinical visits (times), median (IQR)%7 (3, 16.5)6 (4, 11)6 (3, 13)−0.0230.981
Follow-up time (m), median (IQR)%15 (13, 16.5)16 (14, 17)15 (13, 17)1.2090.227

Note. $Chi-square test; &standard deviation; #two-tailed unpaired student’s t-test;interquartile range; %Mann–Whitney U test. Values in bold were statistically significant.