Research Article
Development and External Validation of Machine Learning-Based Models for Predicting Lung Metastasis in Kidney Cancer: A Large Population-Based Study
Table 4
Predictive performance of algorithms in internal and external test cohorts.
| Models | Internal test | External test | AUC | Accuracy | Sensitivity | Specificity | Precision | Recall | F1 score | AUC | Accuracy | Sensitivity | Specificity | Precision | Recall | F1 score |
| LR | 0.903 | 0.787 | 0.873 | 0.783 | 0.180 | 0.873 | 0.299 | 0.896 | 0.866 | 0.75 | 0.872 | 0.231 | 0.75 | 0.353 | RF | 0.791 | 0.885 | 0.661 | 0.897 | 0.260 | 0.661 | 0.373 | 0.703 | 0.876 | 0.5 | 0.895 | 0.197 | 0.5 | 0.283 | SVM | 0.61 | 0.938 | 0.326 | 0.972 | 0.389 | 0.326 | 0.355 | 0.674 | 0.919 | 0.167 | 0.957 | 0.167 | 0.167 | 0.167 | XGB | 0.913 | 0.812 | 0.873 | 0.809 | 0.200 | 0.873 | 0.325 | 0.904 | 0.872 | 0.75 | 0.878 | 0.240 | 0.75 | 0.364 | DT | 0.820 | 0.831 | 0.763 | 0.835 | 0.202 | 0.763 | 0.319 | 0.690 | 0.896 | 0.458 | 0.919 | 0.224 | 0.458 | 0.301 | ANN | 0.906 | 0.792 | 0.875 | 0.787 | 0.184 | 0.875 | 0.304 | 0.891 | 0.843 | 0.792 | 0.846 | 0.209 | 0.792 | 0.331 |
|
|
LR: logistic regression, RF: random forest, SVM: supporting vector machine, XGB: extreme gradient boosting, DT: decision tree, and ANN: artificial neural network.
|