Research Article

Quantitative Assessment of Thyroid Nodules Using Dual-Energy Computed Tomography: Iodine Concentration Measurement and Multiparametric Texture Analysis for Differentiating between Malignant and Benign Lesions

Table 2

Diagnostic performance of selected texture features to differentiate benign thyroid nodules from malignant nodules.

Texture parameterBenign lesions (n = 14)Malignant lesions (n = 20) valueCut-offSensitivity (%)Specificity (%)AUC
MeanSDMeanSD

Mean in histogram
 40 keV1124.839.61091.352.30.052N/AN/AN/A0.682
 60 keV1091.926.21059.894.50.163N/AN/AN/A0.664
 80 keV1085.718.51071.99.40.019<1080.957.185.00.771

Median in histogram
 40 keV1124.839.21099.727.10.034<1112.064.385.00.686
 60 keV1092.826.01072.639.40.103N/AN/AN/A0.679
 80 keV1086.718.61071.99.50.014<1080.971.075.00.771

Contrast in GLCM
 40 keV23.618.918.012.50.309N/AN/AN/A0.629
 60 keV21.320.117.227.10.635N/AN/AN/A0.629
 80 keV18.515.38.44.30.031<15.1250.085.00.693

Skewness in GLGM
 40 keV36.312.328.67.60.030<37.0050.085.00.696
 60 keV36.012.228.87.40.064N/AN/AN/A0.671
 80 keV36.412.028.87.40.030<29.4978.665.00.696

MGR in GLGM
 40 keV5.7923.5599.3405.8050.035>3.30195.035.70.689
 60 keV5.0412.8807.9934.4790.038>3.69285.050.00.693
 80 keV4.8502.6967.6154.1990.038>3.63985.050.00.704

VGR in GLGM
 40 keV19974.210745.330478.116424.10.044>1503685.042.40.689
 60 keV18824.210530.928949.715235.90.039>1209895.035.70.696
 80 keV17957.510154.828800.915431.20.028>1428885.050.00.721

GLCM = gray-level co-occurrence matrix; GLGM = gray-level gradient matrix; MGR = mean gradients; VGR = a variance of gradients; AUC = area under receiver operating characteristic curve; significant differences are defined as ; highest AUC among 41 texture features.