Research Article

Impact of Data Partitioning to Improve Prediction Accuracy for Remaining Useful Life of Li-Ion Batteries

Table 1

Prediction accuracies with each data partitioning method when the percentage of the training set is varied.

CellPercentage
(%)
INIBOXADD
MAE (cycle)RMSE (cycle)MAPE (%)MAE (cycle)RMSE (cycle)MAPE (%)MAE (cycle)RMSE (cycle)MAPE (%)

LFP201041250.5811041250.5871031220.546
3061770.40264770.38561750.381
4044530.29062720.33641490.235
5055650.4521361460.83051600.390
6049600.582941060.93246570.552
7057650.74477850.80058660.744
8044490.69345530.59644490.692
9032330.71122240.46330320.671
NCA20871032.845871032.849871032.849
3076892.658871013.07676892.666
4065742.45776872.96765752.467
5058642.35469762.90258652.376
6031351.67041472.25931351.673
7029321.76340442.41729321.755
8019201.44826282.04219201.451
90990.98115161.703990.971
NMC201001153.0291001153.1551051213.132
3060682.21368792.61761702.271
4043481.80157662.52944501.844
5030341.53844502.23932351.572
6024261.40938432.20824261.424
7020211.42036392.45120211.428
8016171.53926272.45116171.543
9013131.88925272.32013131.906