Research Article
Enhancement of Reflood Test Prediction by Integrating Machine Learning and Data Assimilation Technique
Table 2
The physical models implemented in STARU for the MARS code.
| No. | Type | Parameter descriptions | Uncertainty (%) |
| 1 | Entrainment coefficient | Multiplier for droplet number for reflood | 60 |
| 2 | Dry/wet criteria | Multiplier for dry/wet wall criteria 30°C | 60 |
| 3 | Wall friction factors | Multiplier for the two-phase wall friction for the specified components | 60 |
| 4 | Interfacial drag model | Multiplier for the interfacial drag model for the specified components | 30 |
| 5 | Interfacial heat transfer model | Multiplier for the interfacial heat transfer model for the specified components | 60 |
| 6 | Correlations | Multiplier for liquid Dittus-Boelter correlation | 60 | 7 | Multiplier for Chen nucleate boiling model | 60 | 8 | Multiplier for AECL CHF value | 60 | 9 | Multiplier for Chen transition boiling model | 60 | 10 | Multiplier for Bromley film boiling model | 60 | 11 | Multiplier for vapor Dittus-Boelter correlation | 60 | 12 | Multiplier for Zuber CHF correlation | 60 | 13 | Multiplier for modified Weismann correlation | 60 | 14 | Multiplier for QF film boiling correlation | 60 | 15 | Multiplier for Forslund-Rohsenow correlation | 60 | 16 | Multiplier for reflood superheated vapor correlation | 60 |
|
|