Research Article
Machine Learning Algorithms for Predicting Energy Consumption in Educational Buildings
Table 5
Predictions for performance evaluation using trained models.
| Building | Method | R2 | MSE | RMS | MAE | MAPE |
| CLAS | RF | 0.8506 | 27.245 | 16.530 | 219.73 | 76.947 | CLAS | LSTM | 0.8669 | 11.0921 | 13.3036 | 79.0677 | 56.0298 | CLAS | GBR | 0.984 | 8.148 | 9.335 | 71.722 | 40.2587 | NHAI | RF | 0.479 | 56.293 | 20.439 | 47.78 | 8.45123 | NHAI | LSTM | 0.8372 | 27.10199 | 19.2844 | 33.0788 | 48.11382 | NHAI | GBR | 0.795 | 15.089 | 17.4370 | 32.675 | 52.57254 | Cronkite | RF | 0.89318 | 19.821 | 10.8491 | 117.704 | 56.54793 | Cronkite | LSTM | 0.76096 | 26.12360 | 7.3153 | 29.09945 | 64.8606 | Cronkite | GBR | 0.99817 | 9.1734 | 4.04234 | 16.3405 | 36.34167 |
|
|