Research Article

Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning

Algorithm 1

Initialize variables.
Input: N (population size), (number of decision variables), M (number of targets), gen1 (number of first stage iterations)
Output: (phase 1 population).
(1) ⟵ Random (N, )
(2) ⟵ Non Domination Sort (, , M)
(3)[Init Unevenness, ] ⟵ Train and Measure SOM ()/ Record initial distance /
(4)for  ⟵ 2 to gen1 − 1 do
(5) ⟵ Random (N, V)
(6) ⟵ Non Domination Sort (P ∪ P′, V, M)
(7) ⟵ Uniform extraction of individuals from each layer
(8)end for
(9)return