Research Article

Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning

Algorithm 4

Framework of MOEA-UCML.
Input: N (population size), Q (targeted questions)
Output: (final population).
(1)(, M) ⟵ Parameter Settings (Q)
(2) ⟵ Initialize Variables (N, , M, gen1)
(3) ⟵ Non Domination Sort (, , M)
(4)for  ⟵ gen1 to gen2 do
(5) [, ] ⟵ Train and Measure SOM ()
(6)  Parent ⟵ Tournament Selection ()/ Select suitable sires for breeding /
(7) ⟵ Genetic Operator (Parent, , M)/ Cross mutation to produce offspring /
(8) ⟵ Non Domination Sort (, , M)
(9) ⟵ Replace Chromosome (, , M)/ Select individuals with frontier priorities /
(10)IGD ⟵ Calculating the IGD value of the current frontier
(11) if IGD > Limited Values then
(12)  break;
 end if
end for
(13)for  ⟵ gen2 to do
(14) [, ] ⟵ Train And Measure SOM ()
(15)Parent ⟵ Tournament Selection ()
(16)   ⟵ Mutation NN (Parent, , M)/neuro-clustered optimization strategy /
(17)   ⟵ Non Domination Sort (, , M)
(18)   ⟵ Replace Chromosome (, , M)/ Select individuals with frontier priorities /
 end for
(19)return