Research Article

Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning

Table 3

The IGD comparison results of MOEA-UCML with six traditional multiobjective optimization algorithms on the WFG problem sets.

ProblemCCGDE3GDE3HypEMOEA/DMOEA/D-DENSGAIIMOEA-UCML

WFG11.7336e + 0 (1.20e − 1)−1.6986e + 0 (4.30e − 2)−1.0326e + 0 (8.60e − 2)−6.8356e − 1 (9.47e − 2)−1.4705e + 0 (5.63e − 2)−5.6150e − 1 (6.58e − 2)−4.9263e1 (7.96e2)
WFG24.1103e − 1 (5.95e − 2)−2.8494e − 1 (1.35e − 2)−2.8632e − 1 (7.96e − 3)−3.2244e − 1 (6.32e − 2)−3.6277e − 1 (2.33e − 2)−2.2001e1 (7.28e3)2.2624e − 1 (1.00e − 2)
WFG34.0099e − 1 (5.65e − 2)−3.5928e − 1 (2.58e − 2)−3.1067e − 2 (3.03e − 3)+3.1744e − 1 (9.29e − 2)−2.7073e − 1 (2.60e − 2)−1.2346e − 1 (1.67e − 2)−1.1915e1 (1.60e2)
WFG43.5323e − 1 (2.43e − 2)−3.5333e − 1 (1.43e − 2)−2.6839e − 1 (1.12e − 2)+2.9518e − 1 (1.27e − 2)−3.9702e − 1 (1.02e − 2)−2.8109e − 1 (1.10e − 2)−2.7556e1 (9.68e3)
WFG53.8142e − 1 (1.81e − 2)−2.7836e − 1 (1.06e − 2)3.0093e − 1 (1.38e − 2)−2.7299e1 (7.25e3)+3.3684e − 1 (3.72e − 3)−2.8423e − 1 (8.75e − 3)−2.7339e − 1 (9.38e − 3)
WFG64.1809e − 1 (4.43e − 2)−3.1899e − 1 (2.07e − 2)−2.9994e − 1 (1.40e − 2)−2.9172e − 1 (2.74e − 2)−3.2113e − 1 (4.16e − 2)−2.6845e − 1 (1.29e − 2)−2.6029e1 (1.91e2)
WFG73.3425e − 1 (2.15e − 2)−2.9632e − 1 (9.29e − 3)−3.2576e − 1 (1.47e − 2)−3.2500e − 1 (4.56e − 2)−2.4840e − 1 (6.52e − 3)−2.0655e − 1 (6.52e − 3)−2.0147e1 (5.02e3)
WFG84.5156e − 1 (1.95e − 2)−4.0750e − 1 (1.19e − 2)−3.3085e − 1 (1.00e − 2)−3.1976e − 1 (1.93e − 2)3.5242e − 1 (1.27e − 2)−3.1619e − 1 (6.25e − 3)3.1162e1 (7.98e3)
WFG93.0796e − 1 (4.15e − 2)−3.4566e − 1 (8.10e − 3)−2.8404e − 1 (1.48e − 2)−2.8369e − 1 (7.06e − 2)−2.2949e − 1 (4.69e − 3)−2.0442e − 1 (6.31e − 3)2.0381e1 (7.84e3)
9/0/08/0/17/2/07/1/19/0/06/0/3