Research Article

Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning

Table 4

The HV comparison results of MOEA-UCML with six traditional multiobjective optimization algorithms on the WFG problem sets.

ProblemCCGDE3GDE3HypEMOEA/DMOEA/D-DENSGAIIMOEA-UCML

WFG11.4113e − 1 (5.19e − 2)−1.6485e − 1 (2.22e − 2)−5.5204e − 1 (4.59e − 2)−5.9891e − 1 (5.04e − 2)−2.8526e − 1 (1.98e − 2)−6.9271e − 1 (4.19e − 2)−7.5707e1 (4.14e2)
WFG27.7919e − 1 (2.93e − 2)−8.4679e − 1 (8.81e − 3)−9.0441e − 1 (8.07e − 3)−8.2780e − 1 (4.31e − 2)−8.5648e − 1 (1.22e − 2)−9.3513e1 (3.74e3)9.2813e − 1 (3.58e − 3)
WFG32.5375e − 1 (2.77e − 2)−2.7007e − 1 (1.24e − 2)−3.7515e − 1 (9.33e − 3)−2.8869e − 1 (3.21e − 2)−2.8538e − 1 (2.92e − 2)−3.7690e − 1 (8.64e − 3)−4.0733e1 (1.90e3)
WFG44.4494e − 1 (1.34e − 2)−4.4011e − 1 (5.80e − 3)−5.0989e − 1 (4.13e − 3)−4.9072e − 1 (7.59e − 3)−4.4422e − 1 (7.32e − 3)−5.0249e − 1 (6.15e − 3)−5.5398e1 (1.51e3)
WFG53.9788e − 1 (1.75e − 2)−4.7175e − 1 (9.35e − 3)−4.8268e − 1 (3.50e − 3)−5.2866e1 (6.85e3)+4.5770e − 1 (4.23e − 3)−4.8188e − 1 (4.52e − 3)−5.1690e − 1 (1.03e − 3)
WFG63.3601e − 1 (1.77e − 2)−4.1341e − 1 (1.70e − 2)−4.5474e − 1 (1.94e − 2)−4.3797e − 1 (1.88e − 2)−3.8472e − 1 (2.20e − 2)−4.5300e − 1 (1.51e − 2)−5.0050e1 (1.54e2)
WFG74.0162e − 1 (1.47e − 2)−4.2670e − 1 (1.02e − 2)−5.1806e − 1 (6.11e − 3)−4.3715e − 1 (2.70e − 2)−4.5957e − 1 (1.27e − 2)−5.1079e − 1 (5.54e − 3)−5.5370e1 (1.13e3)
WFG83.3275e − 1 (7.78e − 3)−3.5328e − 1 (9.36e − 3)−4.2703e − 1 (7.52e − 3)−4.0907e − 1 (2.17e − 2)−3.4300e − 1 (1.42e − 2)−4.2525e − 1 (5.96e − 3)4.5667e1 (2.53e3)
WFG93.9728e − 1 (2.87e − 2)−3.8579e − 1 (1.84e − 2)−4.8036e − 1 (2.32e − 2)−4.1361e − 1 (3.73e − 2)−4.5710e − 1 (2.20e − 2)−4.7746e − 1 (2.49e − 2)−5.3328e1 (4.48e3)
9/0/09/0/09/0/08/1/09/0/07/0/2

The bold values indicate the optimal performance results of all algorithms for each test function.