Research Article

Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning

Table 5

The IGD comparison results of MOEA-UCML with three machine learning improved multiobjective optimization algorithms on ZDT, DTLZ, WFG, and UF problem sets.

ProblemMOEA/D-OP1MOEA/D-OP2MOEA/D-DQNMOEA-UCML

ZDT34.3307e − 2 (2.58e − 2)−2.2010e − 1 (6.31e − 2)−1.7122e − 2 (5.58e − 3)−1.6742e2 (5.00e3)
ZDT41.2382e1 (6.48e2)+6.2584e − 1 (3.03e − 1)−2 5453e − 1 (9.70e − 2)−6.0438e − 2 (8.63e − 2)
DTLZ53.3019e − 2 (4.74e − 4)−3.0277e − 2 (1.11e − 3)−2.6538e − 2 (5.78e − 4)−5.8972e3 (2.45e4)
DTLZ63.3856e − 2 (4.15e − 5)−3.3576e − 2 (1.34e − 4)−2.9008e − 2 (4.72e − 5)−5.8490e3 (2.97e4)
DTLZ71.5409e − 1 (1.57e − 3)−1.5373e − 1 (2.81e − 3)−1.1006e − 1 (3.56e − 4)1.0100e1 (5.32e2)
WFG12.5873e1 (2.10e2)+6.8505e − 1 (1.46e − 1)−7.1675e − 1 (8.33e − 2)−4.9263e − 1 (7.96e − 2)
WFG22.3869e − 1 (2.12e − 2)−2.9602e − 1 (2.49e − 2)−2.0742e − 1 (1.96e − 2)−2.2624e1 (1.00e2)
WFG31.5931e − 1 (4.76e − 3)−1.6717e − 1 (1.43e − 2)−1.2825e − 1 (4.77e − 3)−1.1915e1 (1.60e2)
WFG42.6389e − 1 (6.64e − 3)+3.4070e − 1 (1.65e − 2)−2.3703e1 (5.38e3)+2.7556e − 1 (9.68e − 3)
WFG52.5097e − 1 (3.38e − 3)+2.7192e − 1 (7.79e − 3)2.2353e1 (3.01e3)+2.7339e − 1 (9.38e − 3)
WFG62.9117e − 1 (1.93e − 2)−3.9338e − 1 (1.15e − 2)−4.2542e − 1 (4.02e − 2)−2.6029e1 (1.91e2)
WFG72.8538e − 1 (1.65e − 2)−3.7268e − 1 (2.80e − 2)−3.6882e − 1 (1.13c-2)−2.0147e1 (5.02e3)
WFG83.3973e − 1 (8.30e − 3)−5.0260e − 1 (3.83e − 2)−4.8352e − 1 (5.64e − 2)−3.1162e1 (7.98e3)
WFG93.0634e − 1 (4.95e − 2)−3.5093e − 1 (2.58e − 2)−3.5458e − 1 (3.56e − 2)−2.0381e1 (7.84e3)
UF33.4550e − 1 (4.64e − 2)−1.5582e1 (1.01e1)+2.1607e − 2 (1.97e − 2)+3.0769e − 1 (4.36e − 2)
UF82.5450e − 1 (1.92e − 1)−2.3313e − 1 (6.28e − 2)−9.3945e2 (7.22e2)+2.0175e − 1 (2.85e − 2)
UF92.2444e − 1 (7.01e − 2)−1.9439e − 1 (1.07e − 2)7.7286e2 (6.56e2)+2.0951e − 1 (7.06e − 2)
UF107.6045e − 1 (2.01e − 1)−6.5741e − 1 (8.38e − 2)−5.3962e − 1 (1.80e − 1)−4.6333e1 (2.42e1)
14/4/015/1/212/5/1

The bold values indicate the optimal performance results of all algorithms for each test function.