Research Article
Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning
Table 7
The running time comparison results between MOEA-UCML and three traditional multiobjective optimization algorithms on the DTLZ problem set.
| Problem | HypE | MOEAD | MOEADDE | MOEA-UCML |
| DTLZ1 | 5.7786e + 1 (2.28e + 1) | 2.5043e + 0 (2.73e − 1) | 2.1339e + 0 (1.72e − 1) | 2.2106e + 0 (8.67e + 0) | DTLZ2 | 3.4190e + 2 (2.00e + 1) | 2.5045e + 0 (2.44e − 1) | 2.1360e + 0 (1.52e − 1) | 1.7138e + 0 (1.01e + 0) | DTLZ3 | 1.7855e + 1 (1.96e + 0) | 2.5450e + 0 (2.05e − 1) | 2.1945e + 0 (1.59e − 1) | 1.6234e + 0 (1.16e + 0) | DTLZ4 | 2.7614e + 2 (4.10e + 1) | 2.5628e + 0 (2.26e − 1) | 2.1925e + 0 (1.43e − 1) | 1.6232e + 0 (5.71e − 1) | DTLZ5 | 2.2814e + 2 (1.73e + 1) | 2.5606e + 0 (2.58e − 1) | 2.2153e + 0 (1.20e − 1) | 1.5807e + 0 (7.11e − 1) | DTLZ6 | 4.2194e + 2 (3.51e + 1) | 2.7896e + 0 (3.49e − 1) | 2.2638e + 0 (1.59e − 1) | 1.5644e + 0 (9.17e − 1) | DTLZ7 | 9.6128e + 1 (1.33e + 1) | 2.5970e + 0 (2.32e − 1) | 2.2420e + 0 (1.95e − 1) | 1.5553e + 0 (8.01e − 1) | | 7/0/0 | 6/0/1 | 6/0/1 | |
|
|
The bold values indicate the optimal performance results of all algorithms for each test function.
|