Research Article

Uniformity-Comprehensive Multiobjective Optimization Evolutionary Algorithm Based on Machine Learning

Table 7

The running time comparison results between MOEA-UCML and three traditional multiobjective optimization algorithms on the DTLZ problem set.

ProblemHypEMOEADMOEADDEMOEA-UCML

DTLZ15.7786e + 1 (2.28e + 1)2.5043e + 0 (2.73e − 1)2.1339e + 0 (1.72e − 1)2.2106e+0 (8.67e+0)
DTLZ23.4190e + 2 (2.00e + 1)2.5045e + 0 (2.44e − 1)2.1360e + 0 (1.52e − 1)1.7138e+0 (1.01e+0)
DTLZ31.7855e + 1 (1.96e + 0)2.5450e + 0 (2.05e − 1)2.1945e + 0 (1.59e − 1)1.6234e+0 (1.16e+0)
DTLZ42.7614e + 2 (4.10e + 1)2.5628e + 0 (2.26e − 1)2.1925e + 0 (1.43e − 1)1.6232e+0 (5.71e1)
DTLZ52.2814e + 2 (1.73e + 1)2.5606e + 0 (2.58e − 1)2.2153e + 0 (1.20e − 1)1.5807e+0 (7.11e1)
DTLZ64.2194e + 2 (3.51e + 1)2.7896e + 0 (3.49e − 1)2.2638e + 0 (1.59e − 1)1.5644e+0 (9.17e1)
DTLZ79.6128e + 1 (1.33e + 1)2.5970e + 0 (2.32e − 1)2.2420e + 0 (1.95e − 1)1.5553e+0 (8.01e1)
7/0/06/0/16/0/1

The bold values indicate the optimal performance results of all algorithms for each test function.