Research Article

Automobile Component Recognition Based on Deep Learning Network with Coarse-Fine-Grained Feature Fusion

Table 2

Performance comparison of classical networks.

ModelTrainingTestingEvaluationEvaluation with Algorithm 1
DatasetLossAcc. (%)LossAcc. (%)LossAcc. (%)

VGG11DATA_ORI1.275482.037.486923.786.946736.21
DATA_CON1.060681.384.218033.513.93351.35

VGG19DATA_ORI1.046283.667.568428.107.08632.29
DATA_CON0.837466.672.367221.081.751134.59

ResNet18DATA_ORI0.324893.318.753431.357.264842.70
DATA_CON0.290391.1913.699724.865.66152.43

ResNet152DATA_ORI1.484571.717.831329.187.273530.01
DATA_CON1.544472.28277.299219.45142.5928.11

DenseNet121DATA_ORI0.608285.333.967924.323.757130.19
DATA_CON0.56885.4814.586520.5410.48534.05

DenseNet201DATA_ORI0.537487.559.110132.438.115243.78
DATA_CON0.337977.6911.023425.416.015147.03

The best number performed in these comparisons tested.