Research Article
Automobile Component Recognition Based on Deep Learning Network with Coarse-Fine-Grained Feature Fusion
Table 2
Performance comparison of classical networks.
| Model | Training | Testing | Evaluation | Evaluation with Algorithm 1 | Dataset | Loss | Acc. (%) | Loss | Acc. (%) | Loss | Acc. (%) |
| VGG11 | DATA_ORI | 1.2754 | 82.03 | 7.4869 | 23.78 | 6.9467 | 36.21 | DATA_CON | 1.0606 | 81.38 | 4.2180 | 33.51 | 3.933 | 51.35 |
| VGG19 | DATA_ORI | 1.0462 | 83.66 | 7.5684 | 28.10 | 7.086 | 32.29 | DATA_CON | 0.8374 | 66.67 | 2.3672 | 21.08 | 1.7511 | 34.59 |
| ResNet18 | DATA_ORI | 0.3248 | 93.31 | 8.7534 | 31.35 | 7.2648 | 42.70 | DATA_CON | 0.2903 | 91.19 | 13.6997 | 24.86 | 5.661 | 52.43 |
| ResNet152 | DATA_ORI | 1.4845 | 71.71 | 7.8313 | 29.18 | 7.2735 | 30.01 | DATA_CON | 1.5444 | 72.28 | 277.2992 | 19.45 | 142.59 | 28.11 |
| DenseNet121 | DATA_ORI | 0.6082 | 85.33 | 3.9679 | 24.32 | 3.7571 | 30.19 | DATA_CON | 0.568 | 85.48 | 14.5865 | 20.54 | 10.485 | 34.05 |
| DenseNet201 | DATA_ORI | 0.5374 | 87.55 | 9.1101 | 32.43 | 8.1152 | 43.78 | DATA_CON | 0.3379 | 77.69 | 11.0234 | 25.41 | 6.0151 | 47.03 |
|
|
The best number performed in these comparisons tested.
|