Research Article

Multiview Embedding with Partial Labels to Recognize Users of Devices Based on Unified Transformer

Table 6

Ablation Studies of MVEPL without/with label encoder.

GraphTransformerEvaluation
AccuracyPrecisionRecallF1Cost time

rDNSTransformer0.7584/0.83620.2125/0.31430.6124/0.67890.3155/0.4297≈6
Cotransformer0.7652/0.85760.2200/0.35080.6217/0.66560.3250/0.4594≈10
Unified transformer0.7921/0.84710.2440/0.34200.6131/0.73810.3491/0.4674≈13

AS/subnetTransformer0.7702/0.87910.2268/0.40890.6345/0.74010.3342/0.5268≈9
Cotransformer0.8227/0.88120.2844/0.41230.6266/0.72160.3912/0.5248≈13
Unified transformer0.8387/0.89540.3088/0.45360.6254/0.73590.4135/0.5613≈16

LocationTransformer0.7498/0.84020.2006/0.32350.5872/0.69420.2990/0.4413≈10
Cotransformer0.7302/0.86750.1799/0.37770.5531/0.70620.2715/0.4922≈12
Unified transformer0.8129/0.86770.2661/0.37920.6019/0.71470.3690/0.4955≈18

Hardware/softwareTransformer0.7977/0.83200.2569/0.30310.6475/0.65290.3679/0.4140≈5
Cotransformer0.7851/0.84520.2409/0.33710.6338/0.72720.3491/0.4607≈8
Unified transformer0.8045/0.85230.2652/0.35110.6495/0.73620.3766/0.4755≈10

TotalTransformer0.8245/0.87520.2950/0.39920.6694/0.73790.4095/0.5181≈25
Cotransformer0.8325/0.88250.3048/0.41530.6575/0.71750.4165/0.5261≈30
Unified transformer0.8543/0.91580.3491/0.52650.6973/0.73370.4653/0.6131≈50

Bold values highlight the best models outperforming in accuracy and F1.