Research Article
Multiview Embedding with Partial Labels to Recognize Users of Devices Based on Unified Transformer
Table 7
Comparisons with GNNs for embedding of devices.
| Type | Models | Input | Evaluation | Accuracy | Precision | Recall | F1 | Inductive |
| — | Concat | F | 0.6123 | 0.1235 | 0.5353 | 0.2007 | × |
| Homogeneous graph models | Node2Vec | G | 0.6936 | 0.1622 | 0.5692 | 0.2525 | × | Struc2Vec | G | 0.7212 | 0.1900 | 0.6332 | 0.2923 | × | GCN | F + G | 0.8312 | 0.3092 | 0.6943 | 0.4279 | × | GAT | F + G | 0.8545 | 0.3513 | 0.7095 | 0.4699 | √ | GraphSAGE | F + G | 0.8014 | 0.2675 | 0.6814 | 0.3842 | √ | UniMP | F + G | 0.8952 | 0.4526 | 0.7289 | 0.5584 | × |
| Heterogeneous graph models | Metapath2Vec | G | 0.6531 | 0.1326 | 0.5084 | 0.2103 | × | RGCN | F + G | 0.7751 | 0.2249 | 0.6026 | 0.3276 | × | RGAT | F + G | 0.7924 | 0.2470 | 0.6264 | 0.3543 | × | HAN | F + G | 0.8354 | 0.3197 | 0.7189 | 0.4426 | × | HGT | F + G | 0.8527 | 0.3550 | 0.7597 | 0.4839 | × | Concat | F | 0.6123 | 0.1235 | 0.5353 | 0.2007 | × |
| Multiview graph models | MVEPL | F + G + PL | 0.9158 | 0.5265 | 0.7337 | 0.6131 | √ |
|
|