Research Article

Multiview Embedding with Partial Labels to Recognize Users of Devices Based on Unified Transformer

Table 7

Comparisons with GNNs for embedding of devices.

TypeModelsInputEvaluation
AccuracyPrecisionRecallF1Inductive

ConcatF0.61230.12350.53530.2007×

Homogeneous graph modelsNode2VecG0.69360.16220.56920.2525×
Struc2VecG0.72120.19000.63320.2923×
GCNF + G0.83120.30920.69430.4279×
GATF + G0.85450.35130.70950.4699
GraphSAGEF + G0.80140.26750.68140.3842
UniMPF + G0.89520.45260.72890.5584×

Heterogeneous graph modelsMetapath2VecG0.65310.13260.50840.2103×
RGCNF + G0.77510.22490.60260.3276×
RGATF + G0.79240.24700.62640.3543×
HANF + G0.83540.31970.71890.4426×
HGTF + G0.85270.35500.75970.4839×
ConcatF0.61230.12350.53530.2007×

Multiview graph modelsMVEPLF + G + PL0.91580.52650.73370.6131