Research Article

Fusion of Deep Features from 2D-DOST of fNIRS Signals for Subject-Independent Classification of Motor Execution Tasks

Table 4

The accuracy of LeNet in different scenarios.

ScenarioNumber of channelsFusion scheme
EarlyLateJoint

(RHT, LHT, FT)475.27 (77.39 ± 4.16)71.64 (73.03 ± 4.53)77.57 (79.49 ± 4.02)
880.26 (81.95 ± 3.41)77.82 (80.68 ± 3.75)83.85 (86.14 ± 3.24)
1684.74 (86.83 ± 2.26)83.29 (85.59 ± 2.37)87.95 (90.71 ± 2.08)

(RHT, LHT)482.49 (84.72 ± 3.03)77.79 (80.08 ± 3.22)83.57 (85.36 ± 2.96)
885.09 (88.11 ± 2.51)85.14 (86.63 ± 2.78)90.67 (92.09 ± 2.29)
1692.16 (93.64 ± 2.08)89.07 (91.31 ± 2.43)93.54 (95.72 ± 1.91)

(RHT, FT)480.18 (82.90 ± 3.19)77.26 (79.77 ± 3.35)82.86 (85.17 ± 3.11)
885.37 (87.15 ± 2.77)83.87 (85.35 ± 2.96)89.93 (91.38 ± 2.47)
1690.48 (92.68 ± 2.28)88.03 (90.10 ± 2.65)92.26 (94.88 ± 2.06)

(LHT, FT)479.85 (81.82 ± 3.29)76.58 (78.19 ± 3.48)82.08 (84.65 ± 3.13)
884.97 (86.32 ± 2.91)81.17 (83.64 ± 3.15)87.61 (90.81 ± 2.52)
1688.13 (90.18 ± 2.59)86.58 (88.90 ± 2.85)91.05 (93.19 ± 2.23)

The accuracy of modified LeNet is given in parentheses.