Research Article

Fusion of Deep Features from 2D-DOST of fNIRS Signals for Subject-Independent Classification of Motor Execution Tasks

Table 6

The accuracy of MobileNet in different scenarios.

ScenarioNumber of channelsFusion scheme
EarlyLateJoint

(RHT, LHT, FT)479.01 (80.26 ± 3.38)75.46 (77.29 ± 4.15)81.08 (83.41 ± 3.84)
882.23 (83.75 ± 2.62)81.90 (83.03 ± 3.44)87.74 (89.53 ± 3.09)
1688.05 (88.93 ± 2.14)86.36 (88.35 ± 2.19)91.12 (93.02 ± 1.95)

(RHT, LHT)485.49 (86.93 ± 2.72)80.92 (83.49 ± 3.13)86.02 (88.73 ± 2.72)
888.91 (89.93 ± 2.36)87.26 (89.07 ± 2.56)92.82 (94.09 ± 2.14)
1694.01 (95.03 ± 1.95)91.91 (93.41 ± 2.28)97.15 (98.73 ± 1.41)

(RHT, FT)483.29 (84.83 ± 3.08)80.26 (81.99 ± 3.11)85.93 (87.25 ± 3.05)
887.54 (88.28 ± 2.34)86.05 (87.26 ± 2.77)92.06 (94.01 ± 2.26)
1692.71 (93.82 ± 1.87)90.98 (92.18 ± 2.49)95.65 (96.67 ± 1.98)

(LHT, FT)482.17 (83.25 ± 3.12)79.15 (81.01 ± 3.24)85.19 (87.25 ± 3.09)
887.90 (89.16 ± 2.68)84.09 (85.17 ± 3.02)91.01 (92.13 ± 2.33)
1690.88 (92.09 ± 2.16)89.91 (91.63 ± 2.47)93.87 (95.66 ± 2.12)

The accuracy of the modified MobileNet is given in parentheses.