Research Article
Hybrid Time-Series Prediction Method Based on Entropy Fusion Feature
Table 4
Prediction evaluation at different iteration times.
| Index | Algorithm | epoch10 | epoch15 | epoch20 | epoch25 | epoch50 | epoch75 | epoch100 |
| RMSE | EEMD-ELSTM | 1931.74 | 1165.97 | 909.42 | 841.73 | 575.16 | 550.01 | 556.59 | EEMD-LSTM | 1951.56 | 1634.48 | 1184.47 | 1067.86 | 651.13 | 609.33 | 630.51 | ELSTM | 5438.14 | 5367.18 | 5295.41 | 4956.89 | 4632.53 | 4376.05 | 4533.58 | LSTM | 5582.33 | 5582.28 | 5301.50 | 5009.36 | 4739.33 | 4497.84 | 4634.36 |
| MAE | EEMD-ELSTM | 1650.04 | 942.45 | 702.52 | 640.11 | 449.06 | 411.75 | 439.26 | EEMD-LSTM | 1654.95 | 1392.24 | 962.65 | 863.52 | 528.75 | 480.41 | 497.95 | ELSTM | 4598.59 | 4565.94 | 4541.52 | 4372.06 | 4222.25 | 3909.26 | 4286.08 | LSTM | 4662.28 | 4660.97 | 4542.76 | 4433.95 | 4366.71 | 4189.13 | 4325.04 |
| MAPE (%) | EEMD-ELSTM | 4.77 | 2.77 | 2.03 | 1.85 | 1.29 | 1.22 | 1.31 | EEMD-LSTM | 4.81 | 4.01 | 2.81 | 2.55 | 1.55 | 1.54 | 1.55 | ELSTM | 12.66 | 12.60 | 12.51 | 12.14 | 12.01 | 11.80 | 11.92 | LSTM | 12.75 | 12.72 | 12.53 | 12.33 | 12.45 | 11.89 | 12.32 |
| | EEMD-ELSTM | 0.96 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | EEMD-LSTM | 0.96 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | ELSTM | 0.91 | 0.91 | 0.92 | 0.94 | 0.96 | 0.97 | 0.97 | LSTM | 0.88 | 0.88 | 0.91 | 0.94 | 0.96 | 0.97 | 0.97 |
|
|