Research Article
Hybrid Time-Series Prediction Method Based on Entropy Fusion Feature
Table 5
Comparative experimental results of different models.
| Index | Model | Power consumption (kW h) | Temperature (°C) | Wind speed (M/s) | Humidity (%) |
| RMSE | EEMD-ELSTM | 575.15 | 0.51 | 0.0038 | 1.29 | LSTM | 4739.34 | 4.34 | 0.0068 | 7.85 | ARIMA | 1217.73 | 0.72 | 0.0054 | 4.98 | SVR | 7206.11 | 3.42 | 0.0344 | 8.91 | XGBoost | 866.60 | 0.55 | 0.0051 | 1.91 | Prophet | 10793.95 | 6.67 | 0.0079 | 15.25 |
| MAE | EEMD-ELSTM | 449.06 | 0.35 | 0.0026 | 0.99 | LSTM | 4366.71 | 4.43 | 0.0042 | 7.38 | ARIMA | 928.45 | 0.49 | 0.0041 | 2.62 | SVR | 6270.58 | 3.32 | 0.0339 | 8.83 | XGBoost | 666.23 | 0.38 | 0.0032 | 1.43 | Prophet | 9777.84 | 6.08 | 0.0065 | 11.85 |
| MAPE (%) | EEMD-ELSTM | 1.29 | 2.47 | 3.04 | 1.27 | LSTM | 12.44 | 27.41 | 4.73 | 9.08 | ARIMA | 2.42 | 4.92 | 5.04 | 3.89 | SVR | 15.15 | 18.38 | 43.48 | 12.06 | XGBoost | 2.10 | 2.48 | 3.623 | 1.79 | Prophet | 33.31 | 48.03 | 7.68 | 13.71 |
|
|