Research Article

Hybrid Time-Series Prediction Method Based on Entropy Fusion Feature

Table 5

Comparative experimental results of different models.

IndexModelPower consumption (kW h)Temperature (°C)Wind speed (M/s)Humidity (%)

RMSEEEMD-ELSTM575.150.510.00381.29
LSTM4739.344.340.00687.85
ARIMA1217.730.720.00544.98
SVR7206.113.420.03448.91
XGBoost866.600.550.00511.91
Prophet10793.956.670.007915.25

MAEEEMD-ELSTM449.060.350.00260.99
LSTM4366.714.430.00427.38
ARIMA928.450.490.00412.62
SVR6270.583.320.03398.83
XGBoost666.230.380.00321.43
Prophet9777.846.080.006511.85

MAPE (%)EEMD-ELSTM1.292.473.041.27
LSTM12.4427.414.739.08
ARIMA2.424.925.043.89
SVR15.1518.3843.4812.06
XGBoost2.102.483.6231.79
Prophet33.3148.037.6813.71