Research Article
Hybrid Time-Series Prediction Method Based on Entropy Fusion Feature
Table 6
Improved comparative experiment with tuning parameters.
| Index | Model | Power consumption (kW h) | Temperature (°C) | Wind speed (M/s) | Humidity (%) |
| RMSE | EEMD-ELSTM | 501.79 | 0.51 | 0.0040 | 1.08 | LSTM | 1140.19 | 0.72 | 0.0072 | 2.78 | ARIMA | 1217.73 | 0.72 | 0.0054 | 4.98 | ELSTM | 1108.35 | 0.68 | 0.0060 | 2.52 | LSTM-TCN | 680.20 | 0.43 | 0.0052 | 2.08 |
| MAE | EEMD-ELSTM | 399.93 | 0.24 | 0.0028 | 0.87 | LSTM | 758.65 | 0.45 | 0.0042 | 2.05 | ARIMA | 928.45 | 0.49 | 0.0041 | 2.62 | ELSTM | 727.27 | 0.43 | 0.0036 | 1.86 | LSTM-TCN | 513.91 | 0.34 | 0.0032 | 1.51 |
| MAPE (%) | EEMD-ELSTM | 1.27 | 1.61 | 3.58 | 1.16 | LSTM | 2.41 | 4.57 | 5.88 | 2.99 | ARIMA | 2.42 | 4.92 | 5.04 | 3.89 | ELSTM | 2.39 | 4.48 | 5.75 | 2.70 | LSTM-TCN | 1.71 | 3.02 | 4.62 | 2.55 |
|
|