Research Article

Hybrid Time-Series Prediction Method Based on Entropy Fusion Feature

Table 6

Improved comparative experiment with tuning parameters.

IndexModelPower consumption (kW h)Temperature (°C)Wind speed (M/s)Humidity (%)

RMSEEEMD-ELSTM501.790.510.00401.08
LSTM1140.190.720.00722.78
ARIMA1217.730.720.00544.98
ELSTM1108.350.680.00602.52
LSTM-TCN680.200.430.00522.08

MAEEEMD-ELSTM399.930.240.00280.87
LSTM758.650.450.00422.05
ARIMA928.450.490.00412.62
ELSTM727.270.430.00361.86
LSTM-TCN513.910.340.00321.51

MAPE (%)EEMD-ELSTM1.271.613.581.16
LSTM2.414.575.882.99
ARIMA2.424.925.043.89
ELSTM2.394.485.752.70
LSTM-TCN1.713.024.622.55