Research Article
Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings
Table 2
Comparison between LSTM and MLP models without using the fuzzy approach using the entire series.
| Meter | Model | Daily | Hourly | RMSE | MAE | R2 | RMSE | MAE | R2 |
| M1 | | LSTM | 146.1452 | 64.1385 | 0.7411 | 5.3348 | 1.4093 | 0.9177 | MLP | 125.4831 | 56.3078 | 0.8092 | 5.1306 | 1.5869 | 0.9239 |
| M2 | | LSTM | 223.3225 | 88.8834 | 0.5515 | 10.9791 | 1.6636 | 0.8495 | MLP | 138.0524 | 59.2156 | 0.8286 | 10.6464 | 2.9834 | 0.8584 |
| M3 | | LSTM | 190.5074 | 87.7230 | 0.4206 | 4.6348 | 1.0642 | 0.9345 | MLP | 143.4906 | 51.9965 | 0.6713 | 4.7567 | 1.4236 | 0.9311 |
| M4 | | LSTM | 804.5589 | 170.6163 | 0.5776 | 11.1949 | 2.2656 | 0.9827 | MLP | 666.6745 | 190.1642 | 0.7100 | 10.1513 | 2.6782 | 0.9858 |
| M5 | | LSTM | 447.4029 | 104.5444 | 0.5214 | 6.7374 | 1.0369 | 0.9766 | MLP | 379.0906 | 111.1212 | 0.6564 | 6.7014 | 0.9829 | 0.9769 |
| M6 | | LSTM | 218.1491 | 50.4770 | 0.5603 | 5.0652 | 0.6833 | 0.9541 | MLP | 179.5734 | 50.0577 | 0.7020 | 4.8017 | 1.0286 | 0.9588 |
| M7 | | LSTM | 232.0006 | 61.1003 | 0.7551 | 8.1263 | 0.6860 | 0.9419 | MLP | 202.1236 | 66.4395 | 0.8141 | 7.8352 | 1.2313 | 0.9460 |
| M8 | | LSTM | 98.5282 | 24.3363 | 0.7554 | 4.3384 | 0.5955 | 0.9164 | MLP | 89.2251 | 32.0510 | 0.7994 | 4.0838 | 0.8277 | 0.9259 |
| M9 | | LSTM | 78.9721 | 30.2903 | 0.8466 | 4.2556 | 1.5538 | 0.8912 | MLP | 69.3567 | 31.2242 | 0.8817 | 4.1723 | 1.7256 | 0.8954 |
| M10 | | LSTM | 213.9082 | 52.9707 | 0.7196 | 5.7286 | 1.0394 | 0.9535 | MLP | 163.2353 | 63.7221 | 0.8367 | 5.5033 | 1.3785 | 0.9571 |
|
|
Bold value represents the best value between the two rows of each model.
|