Research Article

Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings

Table 2

Comparison between LSTM and MLP models without using the fuzzy approach using the entire series.

MeterModelDailyHourly
RMSEMAER2RMSEMAER2

M1
LSTM146.145264.13850.74115.33481.40930.9177
MLP125.483156.30780.80925.13061.58690.9239

M2
LSTM223.322588.88340.551510.97911.66360.8495
MLP138.052459.21560.828610.64642.98340.8584

M3
LSTM190.507487.72300.42064.63481.06420.9345
MLP143.490651.99650.67134.75671.42360.9311

M4
LSTM804.5589170.61630.577611.19492.26560.9827
MLP666.6745190.16420.710010.15132.67820.9858

M5
LSTM447.4029104.54440.52146.73741.03690.9766
MLP379.0906111.12120.65646.70140.98290.9769

M6
LSTM218.149150.47700.56035.06520.68330.9541
MLP179.573450.05770.70204.80171.02860.9588

M7
LSTM232.000661.10030.75518.12630.68600.9419
MLP202.123666.43950.81417.83521.23130.9460

M8
LSTM98.528224.33630.75544.33840.59550.9164
MLP89.225132.05100.79944.08380.82770.9259

M9
LSTM78.972130.29030.84664.25561.55380.8912
MLP69.356731.22420.88174.17231.72560.8954

M10
LSTM213.908252.97070.71965.72861.03940.9535
MLP163.235363.72210.83675.50331.37850.9571

Bold value represents the best value between the two rows of each model.