Research Article
Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings
Table 3
Comparison of the different clustering techniques for the fuzzy-oriented approach with MLP on a daily basis.
| Meter | Method | RMSE | MAE | R2 |
| M1 | | DB | 177.7155 | 120.7909 | 0.6172 | HC | 144.8932 | 73.3900 | 0.7456 | kM | 147.2462 | 77.8078 | 0.7372 |
| M2 | | DB | 229.1446 | 119.5351 | 0.5278 | HC | 182.6804 | 80.4405 | 0.6999 | kM | 162.8930 | 77.9993 | 0.7614 |
| M3 | | DB | 190.1826 | 104.0214 | 0.4226 | HC | 153.1764 | 77.6672 | 0.6254 | kM | 168.7235 | 94.0590 | 0.5455 |
| M4 | | DB | 855.2163 | 313.5884 | 0.5228 | HC | 676.5370 | 210.2765 | 0.7014 | kM | 727.3272 | 235.0870 | 0.6548 |
| M5 | | DB | 416.8174 | 129.1178 | 0.5846 | HC | 390.0882 | 134.7437 | 0.6362 | kM | 383.4103 | 124.1867 | 0.6485 |
| M6 | | DB | 225.7441 | 85.4364 | 0.5291 | HC | 177.9789 | 66.9214 | 0.7073 | kM | 194.6913 | 93.9808 | 0.6498 |
| M7 | | DB | 338.4739 | 166.1670 | 0.4788 | HC | 224.2768 | 82.0394 | 0.7712 | kM | 213.3479 | 74.5784 | 0.7929 |
| M8 | | DB | 136.1172 | 81.3379 | 0.5331 | HC | 95.7162 | 34.4682 | 0.7691 | kM | 96.7354 | 28.9196 | 0.7642 |
| M9 | | DB | 114.5623 | 57.0771 | 0.6771 | HC | 75.4612 | 32.1241 | 0.8599 | kM | 71.2364 | 29.4829 | 0.8752 |
| M10 | | DB | 259.4291 | 114.6123 | 0.5876 | HC | 171.0675 | 75.5993 | 0.8207 | kM | 191.8339 | 97.0186 | 0.7745 |
|
|
Bold value represents the best value among the three rows of each method. DB is DBScan, HC is hierarchical clustering, and kM is k-Means.
|