Research Article
Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings
Table 4
Comparison of the different clustering techniques for the fuzzy-oriented approach with LSTM on a daily basis.
| Meter | Method | RMSE | MAE | R2 |
| M1 | | DB | 204.6027 | 94.4456 | 0.4926 | HC | 195.5054 | 92.9729 | 0.5367 | kM | 216.1003 | 109.9226 | 0.4340 |
| M2 | | DB | 409.9392 | 307.3953 | −0.5111 | HC | 280.1156 | 121.2162 | 0.2944 | kM | 252.8798 | 92.4339 | 0.4250 |
| M3 | | DB | 275.5571 | 117.3078 | −0.2122 | HC | 211.3214 | 92.0701 | 0.2871 | kM | 222.4379 | 107.1479 | 0.2101 |
| M4 | | DB | 1319.6981 | 654.4967 | −0.1363 | HC | 978.9773 | 214.1039 | 0.3747 | kM | 960.4926 | 191.4649 | 0.3981 |
| M5 | | DB | 544.9214 | 154.6821 | 0.2901 | HC | 511.4943 | 114.9144 | 0.3745 | kM | 511.5907 | 95.2821 | 0.3743 |
| M6 | | DB | 232.0024 | 59.7434 | 0.5026 | HC | 269.5572 | 64.4206 | 0.3286 | kM | 253.0153 | 55.5814 | 0.4085 |
| M7 | | DB | 425.5167 | 166.9462 | 0.1762 | HC | 286.3125 | 98.4231 | 0.6270 | kM | 296.6960 | 95.4022 | 0.5995 |
| M8 | | DB | 170.7479 | 41.8688 | 0.2653 | HC | 117.1675 | 29.4378 | 0.6541 | kM | 115.5324 | 28.0488 | 0.6637 |
| M9 | | DB | 207.3880 | 134.1462 | −0.0581 | HC | 155.0012 | 41.3702 | 0.4089 | kM | 128.7002 | 45.2480 | 0.5925 |
| M10 | | DB | 337.4693 | 87.3844 | 0.3022 | HC | 251.8003 | 85.1934 | 0.6115 | kM | 274.7407 | 84.9319 | 0.5375 |
|
|
Bold value represents the best value among the three rows of each method. DB is DBScan, HC is hierarchical clustering, and kM is k-Means.
|