Research Article
Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings
Table 5
Comparison of the different clustering techniques for the fuzzy-oriented approach with MLP on an hourly basis.
| Meter | Method | RMSE | MAE | R2 |
| M1 | | DB | 5.1093 | 1.6630 | 0.9245 | HC | 5.3902 | 1.8563 | 0.9160 | kM | 5.2176 | 1.8483 | 0.9213 |
| M2 | | DB | 10.8719 | 2.5343 | 0.8524 | HC | 10.9243 | 2.7631 | 0.8510 | kM | 10.6448 | 2.3971 | 0.8585 |
| M3 | | DB | 4.6532 | 0.9554 | 0.9340 | HC | 4.6407 | 1.3267 | 0.9344 | kM | 4.9519 | 1.3331 | 0.9253 |
| M4 | | DB | 10.1662 | 2.3978 | 0.9857 | HC | 11.5014 | 2.7697 | 0.9817 | kM | 10.9031 | 2.7014 | 0.9836 |
| M5 | | DB | 6.8727 | 1.6164 | 0.9757 | HC | 6.9378 | 1.3631 | 0.9752 | kM | 7.2575 | 1.4105 | 0.9729 |
| M6 | | DB | 4.6280 | 0.8201 | 0.9617 | HC | 4.6956 | 0.9210 | 0.9606 | kM | 4.9537 | 1.2178 | 0.9561 |
| M7 | | DB | 7.9172 | 1.3358 | 0.9448 | HC | 7.9193 | 1.7544 | 0.9448 | kM | 7.9968 | 1.1567 | 0.9437 |
| M8 | | DB | 4.1679 | 1.1607 | 0.9228 | HC | 4.2259 | 0.9397 | 0.9207 | kM | 4.1785 | 0.7979 | 0.9224 |
| M9 | | DB | 4.1845 | 1.6167 | 0.8948 | HC | 4.2176 | 1.6730 | 0.8931 | kM | 4.2386 | 1.7501 | 0.8921 |
| M10 | | DB | 5.5571 | 1.3467 | 0.9563 | HC | 5.8465 | 1.6683 | 0.9516 | kM | 5.6554 | 1.2593 | 0.9547 |
|
|
Bold value represents the best value among the three rows of each method. DB is DBScan, HC is hierarchical clustering, and kM is k-Means.
|