Research Article

Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings

Table 6

Comparison between fuzzy and nonfuzzy approaches.

MeterApproachRMSEMAER2

M1
Fuzzy5.10931.66300.9245
Nonfuzzy5.13061.58690.9239

M2
Fuzzy10.87192.53430.8524
Nonfuzzy10.64642.98340.8584

M3
Fuzzy4.65320.95540.9340
Nonfuzzy4.75671.42360.9311

M4
Fuzzy10.16622.39780.9857
Nonfuzzy10.15132.67820.9858

M5
Fuzzy6.87271.61640.9757
Nonfuzzy6.70140.98290.9769

M6
Fuzzy4.62800.82010.9617
Nonfuzzy4.80171.02860.9588

M7
Fuzzy7.91721.33580.9448
Nonfuzzy7.83521.23130.9460

M8
Fuzzy4.16791.16070.9228
Nonfuzzy4.08380.82770.9259

M9
Fuzzy4.18451.61670.8948
Nonfuzzy4.17231.72560.8954

M10
Fuzzy5.50331.37850.9571
Nonfuzzy5.55711.34670.9563

Bold values represent the best approach for each metric; that is to say, for each column (metric), we compare the two approaches (fuzzy and nonfuzzy), and the best is highlighted in bold.