Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings
Table 6
Comparison between fuzzy and nonfuzzy approaches.
Meter
Approach
RMSE
MAE
R2
M1
Fuzzy
5.1093
1.6630
0.9245
Nonfuzzy
5.1306
1.5869
0.9239
M2
Fuzzy
10.8719
2.5343
0.8524
Nonfuzzy
10.6464
2.9834
0.8584
M3
Fuzzy
4.6532
0.9554
0.9340
Nonfuzzy
4.7567
1.4236
0.9311
M4
Fuzzy
10.1662
2.3978
0.9857
Nonfuzzy
10.1513
2.6782
0.9858
M5
Fuzzy
6.8727
1.6164
0.9757
Nonfuzzy
6.7014
0.9829
0.9769
M6
Fuzzy
4.6280
0.8201
0.9617
Nonfuzzy
4.8017
1.0286
0.9588
M7
Fuzzy
7.9172
1.3358
0.9448
Nonfuzzy
7.8352
1.2313
0.9460
M8
Fuzzy
4.1679
1.1607
0.9228
Nonfuzzy
4.0838
0.8277
0.9259
M9
Fuzzy
4.1845
1.6167
0.8948
Nonfuzzy
4.1723
1.7256
0.8954
M10
Fuzzy
5.5033
1.3785
0.9571
Nonfuzzy
5.5571
1.3467
0.9563
Bold values represent the best approach for each metric; that is to say, for each column (metric), we compare the two approaches (fuzzy and nonfuzzy), and the best is highlighted in bold.